9.6: Factor Trinomials in the form $a x^{2}+b x+c$:

Goals: *Factor quadratics when a does not equal 1
*Solve quadratics by factoring
*Remember that when factoring trinomials you are essentially un-F.O.I.L.ing Recall that when you foil:

- The first term of the final answer is obtained by:
- The last term of the final answer is obtained by:
- The second/middle term of the final answer is obtained by:

$$
(d+e)(f+g)=a x^{2}+b x+c
$$

Factor each trinomial into the product of two binomials:

Ex: $2 x^{2}-7 x+3$
$(2 x-1)(2 x-3)$
Ex: $3 n^{2}+14 n-5$
$(3 n-1)(n+5)$

Ex: $3 t^{2}+8 t+4$
Ex: $4 s^{2}-9 s+5$
$(3 t+2)(t+2)$
$(4 s-5)(s-1)$

Ex: $2 n^{2}+13 n-7$

$$
(2 n-1)(n+7)
$$

Ex: $2 x^{2}-13 x+6$
$(2 x-1)(x-6)$

Factor:

Ex: $-4 x^{2}+12 x+7$
Ex: $-2 y^{2}-5 y-3$
$-(2 x+1)(2 x-7)$

Ex: $-5 m^{2}+6 m-1$
$-(5 m-1)(m-1)$

Ex: $-3 x^{2}-x+2$
$-(3 x-2)(x+1)$

Ex: $-3 x^{2}-13 x-4$

$$
-(3 x+1)(x+4)
$$

Ex: An athlete throws a discus from an initial height of 6 feet and with an initial vertical velocity of $46 \mathrm{ft} / \mathrm{s}$.
a. Write an equation that gives the height of the discuss as a function of time (in seconds) since it left the athlete's hand.

$$
h=-16 t^{2}+46 t+6
$$

b. After how many seconds does it hit the ground?

The discuss will hit the ground when $h=0$ so replace h with 0 and solve by factoring
$0=-16 t^{2}+46 t+6$
$0=-2(8 t+1)(t-3)$
t cannot be negative since its time so it must be 3

Ex: A soccer goalie throws the ball into the air with an initial vertical velocity of $28 \mathrm{ft} / \mathrm{s}$, from an initial height of 8 feet.
a. Write an equation that gives the height of the soccer ball as a function of time.

$$
h=-16 t^{2}+28 t+8
$$

b. How long does it take for the ball to reach the ground?

$$
0=-(4 t+1)(t-2) \quad t=2 \text { seconds }
$$

Ex: A rectangle's length is 13 meters more than 3 times its width. The area is 10 square meters. What is the width?

$$
\begin{aligned}
& l \cdot w \\
& w(13+3 w)=10 \\
& 13 w+3 w^{2}=10 \\
& 3 w^{2}+13 w-10=0 \\
& (3 w-2)(w+5)=0 \quad w \text { cannot be negative since it is a dimension so } w=2 / 3
\end{aligned}
$$

Ex: A rectangles length is 5 feet more than 4 times the width. The area is 6 square feet. What is the width?

$$
\begin{aligned}
& w(5+4 w)=6 \\
& 4 w^{2}+5 w-6=0 \\
& (4 w-3)(w+2)=0 \\
& w=3 / 4
\end{aligned}
$$

Factoring $a x^{2}+b x+c$ FORMULA: You still must check your answer by FOILing...even if using the steps below.

Ex: Factor $2 x^{2}-7 x+3$ using the following steps:

1. Multiply $a \cdot c$

$$
\begin{array}{ll}
a=2 & c=3 \\
a \cdot c=6
\end{array}
$$

2. Find the factors of $a \cdot c$ whose sum is b

Find the factors of 6 that add up to -7

$$
m=-6, n=-1
$$

3. Call these factors m and n and plug into the formula: $a x^{2}+m x+n x+c$

$$
\begin{aligned}
& 2 x^{2}+-6 x+-1 x+3 \\
& \left(2 x^{2}+-6 x\right)+(-1 x+3)
\end{aligned}
$$

4. Separate into two binomials
**Not changing the value, just creating two groups
5. Find the GCF in each set of parenthesis separately. You want the leftover binomial (the stuff in parenthesis) to match.

$$
2 x(x-3)+-1(x-3)
$$

6. The matching binomial is a common factor so factor it out, just like you would a GCF.

$$
(x-3)(2 x-1)
$$

7. Check your answer by FOILing.

Factor the following examples using the formula:

Ex: $3 x^{2}+10 x+3$
Ex: $2 x^{2}+5 x-63$
$\left(3 x^{2}+9 x\right)+(1 x+3)$
$\left(2 x^{2}+14 x\right)+(-9 x-63)$
$3 x(x+3)+1(x+3)$
$2 x(x+7)+-9(x+7)$
$(3 x+1)(x+3)$
$(2 x-9)(x+7)$

Ex: $2 x^{2}-7 x+3$
Ex: $3 x^{2}-17 x+10$
$(2 x-1)(x-3)$
$(3 x-15)(x-2)$

Ex: $4 x^{2}+16 x+15$
Ex: $8 x^{2}-2 x-3$
$(2 x+5)(2 x+3)$
$(4 x-3)(2 x+1)$

