9.5: Factor $x^{2}+b x+c$:

Goals: * Factor trinomials whose leading coefficient is 1

* Solve equations by factoring

Quadratic Function: a non-linear function written in the form $y=a x^{2}+b x+c$

Factoring using the GCF is essentially: UN-Distributing

Factoring trinomials into the product of two binomials is essentially: UN-Foiling
Factor means to rewrite a polynomial as the product of two binomials
** a needs to be $1^{* *}$

Ex: Factor:
$x^{2}+11 x+18$

$$
\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=(x+p)(x+q)
$$

*To find p and $q \ldots$ find the factors of c whose sum is b

Factors of 18 that add up to 11 are:
9 and 2
So $x^{2}+11 x+18$ factored is:

$$
(x+2)(x+9) \quad \text { You can check your answer by FOILING! }
$$

Factor each trinomial:

Ex: $x^{2}+3 x+2$

$$
(x+1)(x+2)
$$

Ex: $a^{2}+7 a+10$

$$
(a+5)(a+2)
$$

$\mathbf{E x}: t^{2}+9 t+14$
Ex: $x^{2}+8 x+12$

$$
(t+7)(t+2)
$$

$$
(x+6)(x+2)
$$

$\mathbf{E x}: t^{2}+t-20$

$$
(t+5)(t-4)
$$

Ex: $x^{2}-4 x+3$

$$
(x-3)(x-1)
$$

Ex: $n^{2}-5 n+6$

$$
(n-3)(n-2)
$$

Ex: $y^{2}+2 y-15$

$$
(y+5)(y-3)
$$

Ex: $w^{2}+6 w-16$

$$
(w+8)(w-2)
$$

Ex: $y^{2}+3 y-10$

$$
(y+5)(y-2)
$$

Solve:

Ex: $x^{2}+3 x-18=0$

$$
\begin{aligned}
& (x+6)(x-3)=0 \\
& x=-6 \text { or } x=3
\end{aligned}
$$

Ex: $s^{2}-2 s=24$

$$
\begin{aligned}
& s^{2}-2 s-24=0 \\
& (s-6)(s+4)=0 \\
& s=6 \text { or } s=-4
\end{aligned}
$$

Ex: $x^{2}-3 x=28$

$$
\begin{aligned}
& x^{2}-3 x-28=0 \\
& (x-7)(x+4)=0 \\
& x=7 \quad \text { or } x=-4
\end{aligned}
$$

Ex: You are making banners to hang during school spirit week. Each banner requires 16.5 square feet of felt and will be cut as shown. Find the width of each banner.

$$
\begin{aligned}
& 2\left(4 w+1 / 2 w^{2}\right)=33 \\
& 8 w+w^{2}=33 \\
& w^{2}+8 w-33=0 \\
& (w+11)(w-3)=0 \\
& w=-11 \text { or } w=3 \\
& w=3 \text { since it can't be negative }
\end{aligned}
$$

Ex: You are designing a team flag. The shaded region will have the team name. The entire flag requires 117 square inches of fabric. Find the width.

$$
w+2
$$

$$
\begin{aligned}
& w(w+4)=117 \\
& w^{2}+4 w-117=0 \\
& (w+13)(w-9)=0 \\
& w=9 \quad(\text { can't be }-13)
\end{aligned}
$$

Factor completely.

Ex: $-x^{2}-6 x-5$

$$
\text { Ex: }-x^{2}-4 x-3
$$

$$
\begin{aligned}
& \text { *Make } a=1 \text { by factoring out a GCF of }-1 \\
& \qquad \begin{aligned}
&-1\left(x^{2}+4 x+3\right) \\
&-1(x+3)(x+1)
\end{aligned} ~ . ~(x+3)
\end{aligned}
$$

Ex: $-x^{2}-3 x+70$
Ex: $-x^{2}+17 x-72$
$-1(x-7)(x+10)$
$-1(x-9)(x-8)$

Ex: $2 a^{2}+12 a+16$

$$
\begin{aligned}
& 2\left(a^{2}+6 a+8\right) \\
& 2(a+4)(a+2)
\end{aligned}
$$

Ex: $4 x^{2}-40 x+84$
$4\left(x^{2}-10 x+21\right)$
$4(x-3)(x-7)$

Ex: $3 x^{2}+24 x-144$
$3\left(x^{2}+8 x-48\right)$
$3(x+12)(x-4)$

Ex: $-2 x^{2}-10 x-12$

$$
-2\left(x^{2}+5 x+6\right)
$$

$$
-2(x+3)(x+2)
$$

