8.4: Use Scientific Notation

Goals: *Read and Write numbers in scientific notation

*Order numbers written in scientific notation

*Multiply and Divide numbers written in scientific notation

Stan	dare	1 N	stati	an.
Stan	uaro	1 INC	าเลน	on:

Scientific Notation:

If the power of ten is positive, it tells you:

If the power of ten is negative, it tells you:

Write the following numbers in scientific notation:

Ex:
$$42,590,000 =$$
 X $10^{?}$

Ex:
$$0.0000574 =$$
 X $10^{?}$

Ex: 0.000486 = _____

Write the following numbers in standard notation:

Ex:
$$2.0075 \times 10^6 =$$

Ex:
$$2.0075 \times 10^6 =$$
 _____ **Ex:** $1.685 \times 10^{-4} =$ ____

Ex:
$$7.0235 \times 10^5 =$$

Ex:
$$7.0235 \times 10^5 =$$
 Ex: $3.096 \times 10^{-7} =$

Ex:
$$4.5 \times 10^{-4} =$$

Order numbers in scientific notation:

Ex: Order 103,400,000; 7.8 **X** 10⁸; 80,760,000 from least to greatest.

Ex: Order 93,000,000; 9.2 \times 10⁶; 9,028,000 from least to greatest.

Multiply or divide numbers in scientific notation:

Ex:
$$(8.5 \times 10^2)(1.7 \times 10^6)$$

Ex:
$$(1.5 \times 10^{-3})^2$$

Ex:
$$(5.7 \times 10^3)(2.6 \times 10^4)$$

Ex:
$$(2.4 \times 10^{-4})^2$$

Ex:
$$(1.3 \times 10^{-5})^2$$

Ex:
$$(1.1 \times 10^7)(4.2 \times 10^2)$$

Ex:
$$\frac{1.2 \times 10^4}{1.6 \times 10^{-3}}$$

Ex:
$$\frac{4.5\times10^5}{1.5\times10^{-2}}$$

Ex:
$$\frac{2.4 \times 10^5}{2.5 \times 10^{-4}}$$

Ex: Blood flow is partially controlled by the cross-sectional area of the blood vessel through which the blood is traveling. Three types of blood vessels are venules, capillaries and arterioles.

- a) Let r_1 be the radius of a venule, and let r_2 be the radius of a capillary. Find the ratio of r_1 to r_2 . What does the ratio tell you?
- b) Let A_1 be the cross-sectional area of a venule and A_2 be the cross-sectional area of a capillary. Find the ration of A_1 to A_2 . What does the ratio tell you?