<u>8.3:</u> Zero and Negative Exponents

Goals: *Simplify expressions raised to the zero power *Rewrite expressions using all positive exponents

Zero Exponents:

т	-		

Negative Exponents:

NOTICE

PROOF

 $=\frac{1}{2^{?}}$

2 ² =		$\frac{a^m}{a^n} = a^{m-n}$
$2^{1} =$ $2^{0} =$		$\frac{2^4}{2^5} = 2^{4-5} = 2^{-1}$
$2^{-1} =$	$=\frac{1}{2^{?}}$	$\frac{2\cdot 2\cdot 2\cdot 2}{2\cdot 2\cdot 2\cdot 2\cdot 2} =$

 $2^{-2} = = \frac{1}{2^{?}}$

Simplify the following expressions. Write your answer using positive exponents.

Ex:
$$\left(\frac{2}{3}\right)^0$$
 Ex: $(-1)^0$

Ex: x^{-2} **Ex:** 4^{-3} **Ex:** $(-8)^{-2}$

What if the item is already in the denominator and has a negative exponent?

Ex:
$$\frac{1}{y^{-3}}$$
 Ex: $\frac{1}{2^{-3}}$

Putting it all together.

Ex:
$$\frac{7^3}{7^5}$$
 Ex: $(2xy^{-5})^3$ **Ex:** $(3x^{-2}y^2)^3$ **Ex:** $\frac{5^{-1}}{5^2}$

Some more complicated ones:

Ex:
$$\left(\frac{2}{3}\right)^{-2}$$
 Ex: $\frac{(2x)^{-2}y^5}{-4x^2y^2}$ **Ex:** $\frac{4x^{-2}y^4}{8xy^6}$