8.3: Zero and Negative Exponents

Goals: *Simplify expressions raised to the zero power
*Rewrite expressions using all positive exponents

Zero Exponents:

NOTICE
$2^{5}=$
$2^{4}=$
$2^{3}=$
$2^{2}=$
$2^{1}=$
$2^{0}=?$

PROOF

$5 \cdot 1=5$	and
$4 \cdot 1=4$	
$b \cdot 1=b$	

Anything times 1 is \qquad !

$$
\begin{aligned}
& x^{m} \cdot x^{n}=x^{m+n} \\
& x^{3} \cdot \ldots=x^{3}
\end{aligned}
$$

$$
x^{3} \cdot x^{?}=x^{3+?}=x^{3}
$$

1)
2)

Negative Exponents:
NOTICE
$2^{2}=$
$2^{1}=$
$\frac{2^{4}}{2^{5}}=2^{4-5}=2^{-1}$
$2^{0}=$
$2^{-1}=\quad=\frac{1}{2^{?}}$
$2^{-2}=\quad=\frac{1}{2^{?}}$
PROOF
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$\frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}=\quad=\frac{1}{2^{?}}$

Simplify the following expressions. Write your answer using positive exponents.
Ex: $\left(\frac{2}{3}\right)^{0}$
Ex: $(-1)^{0}$

Ex: x^{-2}
Ex: 4^{-3}
Ex: $(-8)^{-2}$

What if the item is already in the denominator and has a negative exponent?
$\mathbf{E x}: \frac{1}{y^{-3}}$
Ex: $\frac{1}{2^{-3}}$

Putting it all together.
$\operatorname{Ex}: \frac{7^{3}}{7^{5}}$
Ex: $\left(2 x y^{-5}\right)^{3}$
Ex: $\left(3 x^{-2} y^{2}\right)^{3}$
Ex: $\frac{5^{-1}}{5^{2}}$

Some more complicated ones:
$\mathbf{E x}:\left(\frac{2}{3}\right)^{-2}$
$\mathbf{E x}: \frac{(2 x)^{-2} y^{5}}{-4 x^{2} y^{2}}$
Ex: $\frac{4 x^{-2} y^{4}}{8 x y^{6}}$

