7.3: Solve Systems of Equations by Adding or Subtracting

Goals: *Find the solution to a system of equations by eliminating a variable using addition or subtraction
*Arrange systems so you can eliminate

By which two methods can you already solve a system?

Graphing and substitution

Now you will be able to solve an equation by ELIMINATING a variable!!

Ex: $2 x+3 y=11$
$+-2 x+5 y=13$ If you add these two equations together then the x 's will cancel out.
$8 y=24 \quad$ Solve for y
$y=3 \quad$ Now that you know y, plug it into either equation and solve for x

$$
\begin{aligned}
2 x+3(3) & =11 \\
2 x+9 & =11 \\
2 x & =2 \\
x & =1 \quad \text { Solution: }(1,3)
\end{aligned}
$$

Ex: $4 x+3 y=2$

$$
5 x+3 y=-2
$$

$(-4,6)$

Ex: $3 x+4 y=8$
$-3 x+5 y=10$

Ex: $5 x+6 y=4$
$7 x+6 y=8$
$(2,-1)$

Ex: $8 x-4 y=-4$
$4 y=3 x+14$
Since these equations are not lined up, you first need to rearrange them so the variables and equals sign are lined up

$$
\begin{array}{rlrl}
8 x-4 y & =-4 & & \\
+\quad-3 x+4 y & =14 \\
\hline 5 x & =10 & & \text { Now add. } \\
x & =2 & & \text { Solve for } x \\
y & =5 & & \text { Find } y \\
(2,5)
\end{array}
$$

Ex: $9 x-3 y=18$
$3 y=-7 x+30$
$(3,3)$

7.4: Solve Systems of Equations by Multiplying

Goals: *Find the solution to a system of equations by eliminating a variable using multiplication
*Can you add or subtract these equations as they written and still eliminate one of the variables?
$5 x+2 y=16$
$3 x-4 y=20$ No- if you add you get $8 x$ and $-2 y$ and if you subtract you get $2 x$ and $6 y$

*Could you manipulate either equation so you COULD eliminate a variable?

The golden rule of equations is "As long as you do something to one side, do it to the other." If you multiply the first equation by 2 on both sides, then the y coefficients will have the same absolute value and you can add the equations together to eliminate a variable.

$$
\begin{array}{rlrl}
2(5 x+2 y=16) & \rightarrow 10 x+4 y & =32 \\
3 x-4 y=20 & \rightarrow+3 x-4 y & =20 \\
13 x & =42 \\
x & =4 & & \\
y & =-2 \\
(4, & -2)
\end{array} \quad \begin{array}{ll}
\text { Add. } \\
&
\end{array}
$$

Ex: $6 x+5 y=19$
$2 x+3 y=5$

$$
(4,-1)
$$

Ex: $2 x+y=-9$
$4 x+11 y=9$
$(-6,3)$

Ex: $4 x+5 y=35$
$3 x-2 y=9$
$(5,3)$

Ex: $3 x-7 y=5$
$9 y=5 x+5$
$(-10,-5)$

Ex: $2 x-3 y=6$

$$
4 y=-7 x-8 \quad(0,-2)
$$

Ex: During a kayaking trip a kayaker travels 12 miles upstream (against the current) and 12 miles downstream (with the current). It took 3 hours to go upstream and 2 hours to go downstream. The speed of the current stayed the same throughout the trip. Find the average speed of the kayaker and the average speed of the current.
$x=$ speed of the kayaker $\quad y=$ speed of the current $\quad d=r t$
When you go downstream, the current is added to your speed. So the kayaker's speed (r) would be $x+y$ The distance is 12 miles and the time is 2 hours.
$12=2(x+y)$
When you go upstream, the current pushes against your speed, causing it to be less. So the kayaker's speed would be $x-y$. The distance is still 12 mile and the time is 3 hours.

$$
12=3(x-y)
$$

Use these two equations to form a system

$$
\begin{aligned}
& 12=2(x+y) \rightarrow 12=2 x+2 y \rightarrow 3(12=2 x+2 y) \rightarrow 36=6 x+6 y \\
& 12=3(x-y) \rightarrow 12=3 x-3 y \rightarrow 2(12=2 x-2 y) \rightarrow \frac{24}{}=6 x-6 y \\
& 60=12 x \\
& x=5 \\
& y=1
\end{aligned} \quad \text { Add. (Easier than subtraction) }
$$

Ex: A riverboat travels 28 miles upstream in 7 hours. It travels 28 miles downstream in 5 hours. Find the average speed of the riverboat and the current.

Speed of riverboat $=4.8 \mathrm{mph}$, speed of current $=0.8 \mathrm{mph}$

