7.1: Solve Systems of Equations by Graphing:

- Be able to identify an ordered pair as a solution to a system
 Ex: Is (5, 2) a solution to the system:
 \[\begin{align*}
 2x - 3y &= 4 \\
 2x + 8y &= 11
 \end{align*} \]
 No because if you plug in the ordered pair into both equations, it does not work.

- Be able to solve a system of equations by graphing
 Ex: Solve the system by graphing:
 \[\begin{align*}
 6x + 3y &= -6 \\
 2y - 4x &= 12
 \end{align*} \]

7.2: Solve Systems of Equations by Substitution:

- Be able to solve a system of equations by substitution
 Ex: \[\begin{align*}
 y &= x - 2 \\
 x &= 17 - 4y
 \end{align*}\]
 \[\begin{align*}
 x &= 17 - 4(x - 2) \\
 x &= 17 - 4x + 8 \\
 + 4x &+ 4x \\
 5x &= 25 \\
 5 &= 5 \\
 x &= 5
 \end{align*}\]
 \[\begin{align*}
 y &= x - 2 \\
 y &= 5 - 2 \\
 y &= 3 \\
 (5, 3)
 \end{align*}\]

Ex: \[\begin{align*}
 5x + 2y &= 9 \\
 x + y &= -3
 \end{align*}\]
 \[\begin{align*}
 -x &= -x \\
 y &= -3 - x
 \end{align*}\]
 \[\begin{align*}
 5x + 2(-3 - x) &= 9 \\
 5x + -6 - 2x &= 9 \\
 3 x - 6 &= 9 \\
 + 6 &+ 6 \\
 3x &= 15 \\
 x &= 5
 \end{align*}\]
 \[\begin{align*}
 y &= -3 - x \\
 y &= -3 - 5 \\
 y &= -8 \\
 (5, -8)
 \end{align*}\]
Ex: \[y = x - 4 \]
\[y = 18 + 2x \]

\[
x - 4 = 18 + 2x
\]
\[
-x \quad -x
\]
\[
-4 = 18 + x
\]
\[
-18 \quad -18
\]
\[
-22 = x
\]

\[y = x - 4 \]
\[y = -22 - 4 \]
\[y = -26 \quad (-22, -26) \]

Ex: During a football game the parents of football players sell pretzels and popcorn to raise money for new uniforms. They charge $2.50 for a bag of popcorn and $2 for a pretzel. The parents collect $336 in sales during the game and sell twice as many bags of popcorn as pretzels. How many bags of popcorn do they sell? How many pretzels?

Let \(x \) = the number bags of popcorn sold
Let \(y \) = the number of pretzels sold

\[2.5x + 2y = 336 \]
\[x = 2y \]

Popcorn is $2.50 each, pretzels are $2. They made $336 total. There was more popcorn \((x) \) sold, so \(y \) needs to be multiplied by 2 to make the two amounts equal.

\[
2.5(2y) + 2y = 336
\]
\[
5y + 2y = 336
\]
\[
7y = 336
\]
\[
\frac{7y}{7} = \frac{336}{7}
\]
\[
y = 48
\]

\[x = 2y \]
\[x = 2(48) \]
\[x = 96 \]

96 bags of popcorn, 48 pretzels
7.3 – 7.4: Solve Systems of Equations by Eliminating a Variable:

- Be able to add or subtract equations to eliminate a variable in order to solve a system

 Ex: \(4x - 3y = 5\)
 Ex: \(6x - 4y = 14\)
 \[\begin{array}{c}
 + \quad -2x + 3y = -7 \\
 \hline
 2x = -2 \\
 2x = -2
 \end{array}\]

 \[\begin{array}{c}
 \hline
 3x = 13 \\
 3x = 13
 \end{array}\]

 \[\begin{array}{c}
 \hline
 x = \frac{13}{3} \text{ or } 4 \frac{1}{3} \\
 x = \frac{13}{3} \text{ or } 4 \frac{1}{3}
 \end{array}\]

 After plugging \(x\) into either equation, you would get the value for \(y\).

 \[y = -3\]

 \((-1, -3)\)

 Ex: \(3x + 4y = -6\)

 \(2y = 3x + 6\)

 First you have to rewrite the equations so they are lined up. The first equation stays the same, you will subtract \(3x\) in the second equation.

 \[\begin{array}{c}
 3x + 4y = -6 \\
 + \quad -3x + 2y = 6 \\
 \hline
 6y = 0 \\
 6y = 0
 \end{array}\]

 \[\begin{array}{c}
 \hline
 y = 0 \\
 y = 0
 \end{array}\]

 Plug \(y\) into either equation to get \(x = -2\)

 \((-2, 0)\)

- Be able to multiply equations first, then eliminate a variable, in order to solve a system

 Ex: \(x + y = 2\)

 \(2x + 7y = 9\)

 Ex: \(4x - 3y = 8\)

 \(5x - 2y = -11\)

 Multiply the first equation by 2.
 Now \(x\) matches.

 \[\begin{array}{c}
 2x + 2y = 4 \\
 - 2x + 7y = 9
 \end{array}\]

 \[\begin{array}{c}
 8x - 6y = 16 \\
 - 15x - 6y = -33
 \end{array}\]

 Subtract the equations from each other

 \[\begin{array}{c}
 -5y = -5 \\
 -5
 \end{array}\]

 \[\begin{array}{c}
 \hline
 -7x = 49 \\
 -7
 \end{array}\]

 \[\begin{array}{c}
 \hline
 y = 1 \\
 y = 1
 \end{array}\]

 \[\begin{array}{c}
 \hline
 x = -7 \\
 x = -7
 \end{array}\]

 Plug the value of the variable into any equation to find the other value.

 \[x = 1\]

 \((-7, -12)\)