6.3: Solve Multi-Step Inequalities

Goals: *Solve Multi-Step Inequalities
*Identify when an inequality has no solution or any number can be a solution

To Solve Multi-Step Inequalities: Same as solving a multi-step equation- follow reverse PEMDAS. Just need to remember that when you multiply or divide by a negative to solve, you would still reverse the inequality sign.

$$
\text { Ex: } \begin{aligned}
3 x-7 & <8 \\
& +7+7 \\
\frac{3 x}{3} & <\frac{15}{3} \\
x & <5
\end{aligned}
$$

$$
\text { Ex: } \begin{aligned}
&-7 x+2<-5 \\
& \frac{-2}{} \quad-2 \\
& \frac{-7 x}{-7}<\frac{-7}{-7} \\
& x>1
\end{aligned}
$$

Solve:

Ex: $2 x-5 \leq 23$

$$
\begin{array}{r}
+5 \quad+5 \\
\hline \frac{2 x}{2} \leq \frac{28}{2} \\
x \leq 14
\end{array}
$$

Ex: $6 y+5 \geq 11$
$\frac{-5-5}{\underline{6 y} \geq \underline{6}}$
66
$y \geq 1$

$$
\text { Ex: } \begin{aligned}
&-6(x+5) \leq 6 \\
&-6 x-30 \leq 6 \\
& \frac{+30}{}+30 \\
& \frac{-6 x}{-6} \leq \frac{36}{-6} \\
& x \geq-6
\end{aligned}
$$

$$
\text { Ex: } \begin{aligned}
&-4(p-3)>20 \\
&-4 p+12>20 \\
& \frac{-12}{} \quad-12 \\
& \frac{-4 p}{-4}>\underline{8} \\
& p<-2
\end{aligned}
$$

Ex: $6 x-7>2 x+17$

$$
\begin{array}{r}
-2 x \quad-2 x \\
\hline 4 x-7>17 \\
+7 \quad+7 \\
\hline \frac{4 x}{4}>\frac{24}{4} \\
x>6
\end{array}
$$

Ex: $5 x-12 \leq 3 x-4$

$$
\begin{array}{r}
\frac{-3 x \quad-3 x}{2 x-12} \leq-4 \\
+12+12 \\
\hline \frac{2 x}{2} \leq \frac{8}{2} \\
x \leq 4
\end{array}
$$

RECALL from Ch. 3

Solve each equation:

Ex: $4(2 x+3)=2(4 x+5)$
$8 x+3=8 x+10$

$-8 x$	$-8 x$
$3=10$	

No Solution

$$
\text { Ex: } \begin{gathered}
3(4 x+6)=2(6 x+9) \\
12 x+18=12 x+18 \\
-12 x \quad-12 x \\
\hline 18=18
\end{gathered}
$$

Any Number

The same principle applies with inequalities:

This means that: if you get a

- true statement, then "any number" is the solution. This would mean you could open ANY doors you want. Examples of true statements involving inequalities might be $5>3,3 \leq 3$, or $7 \leq 10$
- false statement, then there is "no solution". This would mean you cannot open any doors at all.

Examples of false statements involving inequalities might be $5<3,6>6$, or $4 \geq 14$

Solve:

$$
\text { Ex: } \begin{aligned}
& 14 x+5<7(2 x-3) \\
& 14 x+5<14 x-21 \\
& \frac{-14 x-14 x}{} \\
& 5<-21
\end{aligned}
$$

No Solution
Ex: $5(m+5)<5 m+17$
$5 m+25<5 m+17$
$-5 m \quad-5 m$
$25<17$
No Solution

$$
\text { Ex: } \begin{aligned}
& 12 x-1>6(2 x-1) \\
& 12 x-1>12 x-6 \\
& \frac{-12 x-12 x}{-1>-6}
\end{aligned}
$$

Any Number

$$
\text { Ex: } \begin{gathered}
1-8 s \leq-4(2 s-1) \\
1-8 s \leq-8 s+4 \\
\frac{+8 s+8 s}{1 \leq 4} \\
\text { All Real Numbers }
\end{gathered}
$$

Ex: A gas station charges $\$ 0.10$ less per gallon if a customer purchases a car wash. What are the possible amounts of gallons of gasoline you can buy if you want to spend at most $\$ 20$?

Let x be the number of gallons.
$1.99 x+8 \leq 20$

$$
x \leq 6.03
$$

About 6 gallons or less

Ex: You are saving money for a summer camp that costs $\$ 1800$. You have $\$ 500$ saved so far and 14 more weeks to save. What are the possible average amounts you need to save per week to have the total needed for camp?

$$
\begin{aligned}
500+14 x & \geq 1800 \\
x & \geq 92.86
\end{aligned}
$$

At least $\$ 92.86$ each week.

