## 4.2: Graph Linear Equations by Making a Table

Goals: *Understand what a linear equation is and be able to identify solutions
*Use a table to graph a linear equation
*Graph horizontal and vertical lines
*Choose appropriate $x$ values
*Identify domain and range of a linear equation

Linear equation: Any equation whose graph is a straight line. Linear equations can be written in the form $A x+B y=C$, which is called "Standard Form." In this form, both $A$ and $B$ cannot be 0 .

## Solution:

1) Any ordered pair $(x, y)$ that makes the equation true when substituted.
2) Any point on the line (Since a line continues on forever in both directions, and there are infinite points on a line, then a linear equation has infinite solutions.

THIS MEANS: Because a solution to a linear equation is both a point on the line and an ordered pair that works when substituted in, that if an order pair WORKS in the equation, then it would also be a POINT ON THE LINE:

Ex: Which ordered pair is a solution to: $3 x-y=7$; $(3,4)$ or $(1,-4)$ ? Explain.
If you plug in $(3,4)$ then 3 replaces $x$ and 4 replaces $y$. You would get:
3(3) $-4=7$
$9-4=7$
$5=7$
So no, (3, 4) is not a solution. It does not work when substituted in.
If you plug in $(1,-4)$, then 1 replaces $x$ and -4 replaces $y$. You would get:
$3(1)-(-4)=7$
$3-(-4)=7$
$3+4=7$
$7=7$
So yes, $(1,-4)$ is a solution. When you substitute it in, it works.

Ex: Tell whether $(4,-1)$ is a solution to $x+2 y=5$. Why or why not.

$$
\begin{array}{r}
4+2(-1)=5 \\
4+(-2)=5
\end{array}
$$

$$
2=5 \quad \text { No, it is not a solution. }
$$

Ex: Are the following points solutions to the linear equation represented by the line graphed?
a) $(1,6) \mathrm{Yes}$, it is a point on the line

This means you would expect $(1,6)$ to work if substituted into the Equation of the line graphed. (even though we don't know what the equation is)
b) $(-3,2) \mathrm{No}$, it is not a point on the line

This means you would $\underline{\text { not }}$ expect $(-3,2)$ to work if substituted into the
 Equation of the line graphed. (even though we don't know what the equation is)

## Graph a linear equation by making a table:

**MAKE SURE EQUATION IS IN _function $\qquad$ FORM!

1. Rewrite the equation so it is in function form, which means to isolate $\qquad$ $y$

$$
\mathbf{E x}:-2 x+y=-3
$$

$$
+2 x \quad+2 x
$$

$$
y=-3+2 x
$$

| $x$ | $y=-3+2 x$ | $y$ |
| :---: | :---: | :---: |
| -2 | $y=-3+2(-2)$ | -7 |
| -1 | $y=-3+2(-1)$ | -5 |
| 0 | $y=-3+2(0)$ | -3 |
| 1 | $y=-3+2(1)$ | -1 |
| 2 | $y=-3+2(2)$ | 1 |

## *You should not choose these five values in two cases:

1. If there is a restriction on the domain. For example, if it is says $x \geq 0$, then you must choose only positive values, or if dealing with time, time cannot be negative
2. If after putting the equation in function form, the coefficient of $x$ is a fraction, then it makes the most sense to choose multiples of the denominator to avoid fractions.
3. Plug your 5 values into the function for $x$, find out what $y$ is for each to complete your table.
4. Graph the ordered pairs you now have from your table.


Ex: Graph $y=2-2 x$

| $x$ | $y=2-2 x$ | $y$ |
| :---: | :---: | :---: |
| -2 | $y=2-2(-2)$ | 6 |
| -1 | $y=2-2(-1)$ | 4 |
| 0 | $y=2-2(0)$ | 2 |
| 1 | $y=2-2(1)$ | 0 |
| 2 | $y=2-2(2)$ | -2 |



Ex: Graph $y=-3 x+1$ with a domain of $x \geq 0$

Ex: Graph $y=2-3 x$

| $x$ | $y=2-3 x$ | $y$ |
| :---: | :---: | :---: |
| -2 | $y=2-3(-2)$ | 8 |
| -1 | $y=2-3(-1)$ | 5 |
| 0 | $y=2-3(0)$ | 2 |
| 1 | $y=2-3(1)$ | -1 |
| 2 | $y=2-3(2)$ | -4 |


*which values can you not choose
for $x$ ? Why? Cannot choose negative numbers because $x$
must be greater than or equal to 0


| $x$ | $y=-3 x+1$ | $y$ |
| :---: | :--- | :---: |
| 0 | $y=-3(0)+1$ <br> $y=0+1$ | 1 |
| 1 | $y=-3(1)+1$ <br> $y=-3+1$ | -2 |
| 2 | $y=-3(2)+1$ <br> $y=-6+1$ | -5 |
| 3 | $y=-3(3)+1$ <br> $y=-9+1$ | -8 |
| 4 | $y=-3(4)+1$ <br> $y=-12+1$ | -11 |

Range: $y \leq 1$

Notice on the graph there is only an arrow on one end because the line cannot extend into the second quadrant. There, $x$ would be negative.

Ex: Graph $y=\frac{1}{2} x+4$
**which values should you pick for $x$ ? Why?
You should choose multiples of 2 to cancel out fractions.


| $x$ | $y=\frac{1}{2} x+4$ | $y$ |
| :---: | :---: | :---: |
| -4 | $y=\frac{1}{2}(-4)+4$ <br> $y=-2+4$ | 2 |
| -2 | $y=\frac{1}{2}(-2)+4$ <br> $y=-1+4$ | 3 |
| 0 | $y=\frac{1}{2}(0)+4$ <br> $y=0+4$ | 4 |
| 2 | $y=\frac{1}{2}(2)+4$ <br> $y=1+4$ | 5 |
| 4 | $y=\frac{1}{2}(4)+4$ <br> $y=2+4$ | 6 |

Ex: Graph $y=\frac{2}{3} x-1$ with a domain of $x \leq 0$ then identify the range.


| $x$ | $y=\frac{2}{3} x-1$ | $y$ |
| :---: | :---: | :---: |
| -12 | $y=\frac{2}{3}(-12)-1$ <br> $y=-8-1$ | -9 |
| -9 | $y=\frac{2}{3}(-9)-1$ <br> $y=-6-1$ | -7 |
| -6 | $y=\frac{2}{3}(-6)-1$ <br> $y=-4-1$ | -5 |
| -3 | $y=\frac{2}{3}(-3)-1$ <br> $y=-2-1$ | -3 |
| 0 | $y=\frac{2}{3}(0)-1$ <br> $y=0-1$ | -1 |

Ex: Graph $y=-3$



Ex: Graph $x=4$

| $\boldsymbol{x}$ | 4 | 4 | 4 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{y}$ | -2 | -1 | 0 | 1 | 2 |



Ex: The distance, $d$, in miles, that a runner travels is given by the function $d=6 t$ where $t$ is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for $t$.

$$
\text { Domain: } t \geq 0
$$

| $t$ | 0 | 0.5 | 1 | 1.5 |
| :--- | :--- | :--- | :--- | :--- |
| $d$ | 0 | 3 | 6 | 9 |

Ex: Suppose the same runner decides he wants to run 12 miles. Set up a new table with at least 3 values and identify the new domain and range.

| $t$ | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $d$ | 0 | 6 | 12 |

Domain: $0 \leq t \leq 2$
Range: $\quad 0 \leq d \leq 12$

Ex: For gas that costs $\$ 2$ per gallon, the equation $C=2 g$ gives the cost, $C$, in dollars for $g$ gallons of gas. You plan to pump $\$ 10$ worth of gas. Set up a table and identify the domain and range.

| $g$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $C$ | 0 | 2 | 4 | 6 | 8 | 10 |

Domain: $0 \leq g \leq 5$
Range: $0 \leq C \leq 10$

