4.2: Graph Linear Equations by Making a Table

Goals: *Understand what a linear equation is and be able to identify solutions
*Use a table to graph a linear equation
*Graph horizontal and vertical lines
*Choose appropriate x values
*Identify domain and range of a linear equation

Linear equation:

Solution:

1)
2)

THIS MEANS:

Ex: Which ordered pair is a solution to: $3 x-y=7$; $(3,4)$ or $(1,-4)$? Explain

Ex: Tell whether $(4,-1)$ is a solution to: $x+2 y=5$. Why or why not.

Ex: Are the following points solutions to the linear equation represented by the line graphed?
a) $(1,6)$
b) $(-3,2)$

\qquad FORM!

1. Rewrite the equation so it is in function form, which Ex: $-2 x+y=-3$ means to isolate \qquad
2. Choose 5 appropriate values for x. Typically these values are:

\qquad , \qquad , \qquad
\qquad , \qquad
*You should not choose these five values in two cases:
3.
4.
5. Plug your 5 values into the function for x, find out what y is for each to complete your table.
6. Graph the ordered pairs you now have from your table.

Ex: Graph $y=2-2 x$

\boldsymbol{x}		\boldsymbol{y}

Ex: Graph $y=2-3 x$

\boldsymbol{x}		\boldsymbol{y}

Ex: Graph $y=-3 x+1$ with a domain of $x \geq 0 \quad$ *which values can you not choose for x ? Why?

\boldsymbol{x}		\boldsymbol{y}

Ex: Graph $y=\frac{1}{2} x+4 \quad * *$ which values should you pick for x ? Why?

\boldsymbol{x}		\boldsymbol{y}

Ex: Graph $y=\frac{2}{3} x-1$ with a domain of $x \leq 0$ then identify the range.

\boldsymbol{x}		\boldsymbol{y}

Ex: Graph $y=-3$

Ex: The distance, d, in miles, that a runner travels is given by the function $d=6 t$ where t is the time (in hours) spent running. The runner plans to go for a 1.5 hour run. Set up a table and identify the domain and range of the function. Choose at least 4 values for t.

Domain: \qquad
Range: \qquad

Ex: Suppose the same runner decides he wants to run 12 miles. Set up a new table with at least 3 values and identify the new domain and range.

\boldsymbol{t}		\boldsymbol{d}

Domain: \qquad

Range: \qquad

Ex: For gas that costs $\$ 2$ per gallon, the equation $C=2 g$ gives the cost, C, in dollars for g gallons of gas. You plan to pump $\$ 10$ worth of gas. Set up a table and identify the domain and range.

\boldsymbol{g}		\boldsymbol{C}

Domain:

\qquad
Range: \qquad

