3.5/3.6: Write and Solve Ratios and Proportions

Goals: *Write ratios in simplest form
*Solve proportions using cross-products
*Write and solve proportions from real-world situations

Ratio: a comparison of \qquad two \qquad quantities using \qquad division \qquad

Proportion: an \qquad _equation \qquad stating two \qquad _ratios \qquad are \qquad equal \qquad

Ex: Derek and his brother decide to combine their CD collections. Derek has 44 CDs and his brother has 52 CDs.
a) Find the ratio of Derek's CDs to his brother's.

$$
\frac{\text { Derek }}{\text { Bro }}=\frac{44}{52}=\frac{11}{13} \quad \text { This means that for every } 11 \text { CD's Derek has, his brother has } 13
$$

b) Find the ratio of Derek's CDs to the entire collection.

$$
\frac{\text { Derek }}{\text { Total }}=\frac{44}{96}=\frac{11}{24} \quad \text { This means that for every } 24 \text { CD's, Derek has } 11 \text { of them }
$$

Ex: A volleyball team plays 14 home matches and 10 away matches.
a) Find the ratio of home matches to away matches.

$$
\frac{14}{10}=\frac{7}{5}
$$

b) Find the ratio of home matches to all matches.

$$
\frac{14}{24}=\frac{7}{12}
$$

Ex: At a carwash fund raiser, 18 ninth grade students and 14 tenth grade students worked the first shift.
a) Find the ratio of ninth grade students to tenth grade students.

$$
\frac{18}{14}=\frac{9}{7}
$$

b) Find the ratio of ninth grade students to all students.

$$
\frac{18}{32}=\frac{9}{16}
$$

Proportion: An equation stating that two rations are equal

To solve a proportion: Cross multiply, then solve like a normal equation.

Solve:

$\mathbf{E x}: \frac{w}{35}=\frac{4}{7}$
Ex: $\frac{9}{2}=\frac{m}{12}$

$$
\begin{aligned}
7 w & =35(4) \\
7 w & =140 \\
w & =20
\end{aligned}
$$

$$
\begin{aligned}
2 m & =9(12) \\
2 m & =108 \\
m & =54
\end{aligned}
$$

Ex: $\frac{z}{54}=\frac{5}{9}$
Ex: $\frac{m+3}{8}=\frac{40}{64}$

$$
\begin{aligned}
9 z & =270 \\
z & =30
\end{aligned}
$$

$$
\begin{aligned}
64(m+3) & =320 \\
64 m+192 & =320 \\
64 m & =128 \\
m & =2
\end{aligned}
$$

Ex: A recipe for tomato salsa calls for 30 tomatoes to make 12 pints of salsa. How many tomatoes are needed to make 4 pints?

$$
\begin{aligned}
\frac{30 \text { tomatoes }}{12 \text { pints }} & =\frac{x \text { tomatoes }}{4 \text { pints }} \\
12 x & =120 \\
x & =10 \text { tomatoes }
\end{aligned}
$$

Ex: The elevator that takes passengers from the lobby of the John Hancock Center in Chicago to the observation level travels 150 feet in 5 seconds. The observation level is located on the $94^{\text {th }}$ floor, at 1029 feet above the ground. How long does it take to get from the lobby to the observation deck?

$$
\begin{aligned}
\frac{150 \text { feet }}{5 \text { seconds }} & =\frac{1029 \text { feet }}{x \text { seconds }} \\
150 x & =5145 \\
x & =34.3 \text { seconds }
\end{aligned}
$$

Ex: When two full moons occur in the same month, the second full moon is called a "blue moon." On average, 2 blue moons occur every 5 years. How many are likely to occur in the next 25 years?

$$
\begin{aligned}
\frac{2}{5} & =\frac{x}{25} \\
50 & =5 x \\
x & =10
\end{aligned}
$$

$$
\text { Ex: } \begin{aligned}
& \frac{4}{x}=\frac{8}{x-3} \\
& 4(x-3)=8 x \\
& 4 x-12=8 x \\
&-12=4 x \\
& x=-3
\end{aligned}
$$

$$
\text { Ex: } \begin{aligned}
& \frac{3}{x}=\frac{9}{x-4} \\
& 3(x-4)=9 x \\
& 3 x-12=9 x \\
&-12=6 x \\
&-2=x
\end{aligned}
$$

Scale Drawing (or model): A drawing or model in which the dimensions are proportional to the actual object

Scale: relates the object's dimensions to the dimensions or the drawing or model

Ex: 1 in: 12 feet means: 1 inch on a drawing or model means 12 feet on the actual object

Ex: A map's scale is $1 \mathrm{~cm}: 85 \mathrm{~km}$. Using a meter stick, the distance between Cleveland and Cincinnati is about 4.2 cm . How many kilometers apart are they?

$$
\begin{aligned}
& \frac{1}{85}=\frac{4.2}{x} \\
& x=357 \mathrm{KM}
\end{aligned}
$$

