3.1: Solve One-Step Equations

Goals: *Solve equations using addition and subtraction *Solve equations using multiplication and division
*Solve equations involving fractions and reciprocals
*Check answers
Inverse Operations: Operations that undo each

- Addition and subtraction
- Multiplication and division
- Square roots and squaring

Properties of Equality:

To Solve an Equation You Need To: ISOLATE THE VARIABLE

GOLDEN RULE OF EQUATION SOLVING

WHATEVER YOU DO TO ONE SIDE OF THE EQUATION DO TO THE OTHER!

Solve each equation. Show all work.

Ex: $x+7=4$

$$
\frac{-7 \quad-7}{x=-3}
$$

Ex: $x-12=3$
$+12+12$
$x=15$

Ex: $\begin{aligned} \underline{-6 x} & =\underline{48} \\ -6 & =-8 \\ x & =-8\end{aligned}$

$$
\begin{aligned}
\frac{-4-4}{-x} & =11 \\
x & =-11
\end{aligned}
$$

Ex: $\quad-\frac{7}{2} \cdot-\frac{2}{7} x=4 \cdot-\frac{7}{2}$
Ex: $\quad \frac{6}{5} \cdot \frac{5}{6} w=10 \cdot \frac{6}{5}$
Ex: $\quad \frac{3}{2} \cdot \frac{2}{3} p=14 \cdot \frac{3}{2}$

$$
x=-14
$$

$$
w=12
$$

$$
p=21
$$

Ex: $\quad-\frac{4}{3} \cdot 9=-\frac{3}{4} n \cdot-\frac{4}{3}$
Ex: $\quad-\frac{5}{4} \cdot-8=-\frac{4}{5} v \cdot-\frac{5}{4}$
Ex: $\frac{9 x}{9}=\frac{3}{9}$
$n=-12$
$v=10$
$x=\frac{1}{3}$

Ex: In the 2004 Olympics, Shawn Crawford won the 200 meter dash. His winning time was 19.79 seconds. Find his average speed to the nearest tenth of a meter per second.

$$
\begin{aligned}
& d=r t \\
& 200=r(19.79) \\
& r=10.1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ex: What if Crawford ran the 100 meter dash at the same speed as the 200 ? How long would it take him to run it?

$$
\begin{aligned}
& d=r t \\
& 100=10.1 t \\
& t=9.9 \text { second }
\end{aligned}
$$

Ex: In the 2004 Olympics, Inge de Brujin won the 50 -meter freestyle with a time of 24.58 seconds. What was her average speed?

$$
\begin{aligned}
& d=r t \\
& 50=r(24.58) \\
& r=2.03 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ex. You are traveling 250 miles to your friend's house. It takes you 5 hours to get there. What was your average speed?

$$
\begin{aligned}
& d=r t \\
& 250=r(5) \\
& r=50 \mathrm{mph}
\end{aligned}
$$

Ex. You are traveling 150 miles to your cousin's house. You travel at a rate of 50 miles per hour. When will you get to your cousin's house?

$$
\begin{aligned}
& d=r t \\
& 150=50 t \\
& t=3 \text { hours }
\end{aligned}
$$

