3.1: Solve One-Step Equations
- Be able to use inverse operations to isolate the variable and solve one-step equations

Ex: \(\frac{2}{7} n = -4 \)
Ex: \(-5 + x = -4\)
Ex: \(1 - x = -2\)

Ex: \(x - 4 = -8 \)
Ex: \(-2t = 12\)
Ex: \(\frac{x}{-3} = 4\)

3.2/3.3: Solve 2/Multi-Step Equations
- Be able to use inverse operations and reverse PEMDAS to solve multi-step equations

Ex: \(4w + 2w = 24\)
Ex: \(\frac{x}{2} + 5 = 11\)
Ex: \(3x - 5 = 13\)

Ex: \(5x - 4(x - 3) = 17\)
Ex: \(\frac{3}{4}(z - 6) = 12\)
Ex: \(-4 = 2(x - 2) - 3(1 - x)\)
3.4: Solve equations with variables on both sides

- Be able to solve equations with variables on both sides by moving variable terms together

Ex: \(4x + 5 = 17 - 2x\) \hspace{1cm} Ex: \(3m - 25 - 8m = m - 14\) \hspace{1cm} Ex: \(4(m - 3) = 2(6 - 2m)\)

- Be able to identify when an equation has no solution, infinite solutions or 0 as the solution

Ex: \(-5(3a - 4) = 7a + 27 - 7\) \hspace{1cm} Ex: \(4(3x + 2) = 2(6x + 4)\)

Ex: \(5z - 6 = (z - 1)5\)

Ex: \(34x = 17\) \hspace{1cm} Ex: \(9x = 3\) \hspace{1cm} Ex: \(-4x = 2\) \hspace{1cm} Ex: \(-10x = -5\)