2.7: Find Square Roots and Compare Real Numbers

Goals:

*Find square roots of perfect squares
*Estimate square roots of non-perfect squares
Square root: one of two \qquad factors of a number
$\sqrt{ }="$
" sign.... **IT TALKS!!**
It asks the question:
"WHAT \qquad TIMES \qquad IS \qquad

Evaluate the given expression:

Ex: $\sqrt{16}$
Ex: $\sqrt{64}$
Ex: $\sqrt{81}$
Ex: $\sqrt{100}$
Ex: $\sqrt{121}$
Ex: $\sqrt{49}$

Perfect squares: a number whose \qquad is an
\qquad —.

1, \qquad , \qquad , \qquad , \qquad , \qquad , \qquad
\qquad ,

Estimate Square Roots:
Ex: $\sqrt{40}$

1. Find the two closest \qquad .
One above and one below.
2. Put the numbers in order from \qquad to
3. Find the \qquad
\qquad of the two
\qquad .
4. Pick the \qquad one.

Estimate the following square roots:

Ex: $\sqrt{110}$
Ex: $\sqrt{20}$

Ex: $-\sqrt{38}$
Ex: $\sqrt{8}$

Evaluate the expression for the given value of x :

Ex: $11-\sqrt{x}$ when $x=81$ Ex: $6 \sqrt{x}+3$ when $x=100$

OUESTION

What number times itself would be 9 ? \qquad

Is there any other number times itself that could be 9 ? \qquad

All numbers have \qquad square roots. One is \qquad and one is \qquad .

Ex: $\sqrt{25}$
Ex: $-\sqrt{25}$
Ex: $\pm \sqrt{25}$

QUESTION

What number times itself would be -16 ? \qquad
Prove it by multiplying that number by itself. \qquad x \qquad
Did you get -16 ?

Extension:

If \sqrt{x} means to find the square root (the number times itself) that equals x, what do you think $\sqrt[3]{x}$ means?

Evaluate:

Ex: $\sqrt[3]{8}$
Ex: $\sqrt[3]{27}$
Ex: $\sqrt[3]{64}$

