2.7: Find Square Roots and Compare Real Numbers

Goals:

*Find square roots of perfect squares
*Estimate square roots of non-perfect squares
Square root: one of two \qquad equal \qquad factors of a number
$\sqrt{ }=$ " Radical "sign....**IT TALKS!!**
It asks the question:
"WHAT \qquad number \qquad TIMES \qquad _itself \qquad IS _the number inside \qquad $? "$

Evaluate the given expression:

Ex: $\sqrt{16}$
Ex: $\sqrt{64}$
Ex: $\sqrt{81}$
4
8
9
Ex: $\sqrt{100}$
Ex: $\sqrt{121}$
Ex: $\sqrt{49}$

$$
10
$$

$$
11
$$

7

Perfect squares: a number whose \qquad square \qquad root \qquad is an \qquad integer \qquad .
$1, _4$ \qquad , _9 \qquad 16 \qquad __36__, -49__,
\qquad _64 \qquad , _81 \qquad , _100 \qquad _121 \qquad 144 \qquad , 169 \qquad _,
_196 \qquad , _225

Estimate Square Roots:

Ex: $\sqrt{40}$

1. Find the two closest \qquad perfect \qquad squares \qquad .

$$
\begin{array}{ccc}
\sqrt{36} & \sqrt{40} & \sqrt{49} \\
6 & \sqrt{40} & 7
\end{array}
$$

2. Put the numbers in order from _least \qquad to
\qquad greatest \qquad -.
3. Find the \qquad square \qquad roots \qquad of the two
___perfect \qquad squares \qquad -.
4. Pick the _closer \qquad one.

Estimate the following square roots:

Ex: $\sqrt{110}$
$\sqrt{100} \sqrt{110} \sqrt{121}$
$10 \quad 11$
Closer to 10

Ex: $-\sqrt{38}$

$$
\begin{array}{crr}
-\sqrt{49} & -\sqrt{39} & -\sqrt{36} \\
-7 & -\sqrt{39} & -6
\end{array}
$$

Evaluate the expression for the given value of x :
Ex: $11-\sqrt{x}$ when $x=81$
$11-\sqrt{81}$
11-9
2

$$
\mathbf{E x}: \sqrt{20}
$$

$$
\sqrt{16} \sqrt{20} \sqrt{25}
$$

$4 \quad 5$
Closer to 4
$\sqrt{4} \sqrt{8} \sqrt{9}$
23
Ex: $6 \sqrt{x}+3$ when $x=100$
$6 \sqrt{100}+3$
$6 \cdot 10+3$
$60+3$
63

OUESTION

What number times itself would be 9 ? \qquad 3 \qquad
Is there any other number times itself that could be 9 ? \qquad -3 \qquad

All numbers have __2 _ square roots. One is ___positive \qquad and one is \qquad negative \qquad .

Ex: $\sqrt{25}$

5

Ex: $\pm \sqrt{25}$
± 5

QUESTION

What number times itself would be -16 ? \qquad There isn't one \qquad
Prove it by multiplying that number by itself. \qquad x \qquad
Did you get -16 ?
Nothing times itself will ever be negative. If a number is positive, then positive times a positive is a positive.

If a number is negative, then a negative times a negative is also positive.

Extension:

If \sqrt{x} means to find the square root (the number times itself) that equals x, what do you think $\sqrt[3]{\boldsymbol{x}}$ means?
Cube root - The number times itself three times.

Evaluate:

Ex: $\sqrt[3]{8}$

2

Ex: $\sqrt[3]{27}$

3
Proof: $3 \cdot 3 \cdot 3=27$

Ex: $\sqrt[3]{64}$

4
Proof: $4 \cdot 4 \cdot 4=64$

