Rules: $\mathrm{P} \cdot \mathrm{P}=\mathrm{P}$
$P \div P=P$
$\mathrm{P} \cdot \mathrm{N}=\mathrm{N} \quad \mathrm{N} \cdot \mathrm{P}=\mathrm{N}$
$\mathrm{P} \div \mathrm{N}=\mathrm{N} \quad \mathrm{N} \div \mathrm{P}=\mathrm{N}$
$\mathrm{N} \cdot \mathrm{N}=\mathrm{P}$
$\mathrm{N} \div \mathrm{N}=\mathrm{P}$
Ex: - 3(6)
Ex: 2(-4)(-3)
Ex: $-\frac{1}{2}(-4)(-3)$
Ex: - 2(-7)

Ex: $-0.5(-4)(-9)$
Ex: $-40 \div(-10)$
Ex: $-16 \div 4$
Ex: $36 \div(-12)$

Would the following answers be positive or negative?
Ex: $(-2)(-6)(-8)(-4)$
Ex: $(-2)(6)(-8)(-4)$

Is there a shortcut to determining if the final answer will be positive or negative?

Multiplicative Inverse:

Ex: $-20 \div \frac{5}{3}$
Ex: $\frac{4}{3}(-3)(7)$
Ex: $-\frac{3}{8} \div\left(-\frac{3}{10}\right)$

Ex: In 1900 the elevation of Mono Lake, CA was about 6416 feet. From 1900 to 1950, the average rate of change in elevation was about -0.12 feet/year. From 1950 to 2000 the average rate of change was about -0.526 feet/year.
a) Find the elevation in the year 1950.
b) Find the elevation in the year 2000.

Ex: The table gives the daily minimum temperatures (in degrees Fahrenheit) in Barrow, Alaska, for the first five days of February 2004. Find the mean daily minimum temperature.

Day in Feb.	1	2	3	4	5
Min. Temp.	-21	-29	-39	-39	-22

