11.4: Apply the Pythagorean Theorem and its Converse

Goals: *Use the Pythagorean Theorem to find a missing side of the right triangle *Use the Pythagorean Theorem to decide if three sides could form a right triangle

Anatomy of a Right Triangle

Pythagorean Theorem: if, and only if, a triangle is a right triangle, then the sum of the squares of the lengths of the legs is equal to the length of the hyptonenuse squared.

$$
a^{2}+b^{2}=c^{2}
$$

Use the Pythagorean Theorem to find the missing length:

Ex:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
4^{2}+3^{2} & =c^{2} \\
16+9 & =c^{2} \\
25 & =c^{2} \\
5 & =c
\end{aligned}
$$

Ex:

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
12^{2}+5^{2} & =c^{2} \\
144+25 & =c^{2} \\
169 & =c^{2} \\
13 & =c
\end{aligned}
$$

Ex:
4 yds

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 4^{2}+b^{2}=9^{2} \\
& 16+b^{2}=81 \\
&-16 \quad-16 \\
& \hline b^{2}=65 \\
& b=8.06 \text { yards }
\end{aligned}
$$

Ex:

$$
c=7 \mathrm{~m}
$$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}+6^{2}=7^{2} \\
& a^{2}+36=49 \\
&-36-36 \\
& a^{2}=13 \\
& a=3.61 \mathrm{~m}
\end{aligned}
$$

Ex: Four people standing in a rectangle are playing Frisbee. Approximately how far is the throw from person A to person C?

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
20^{2}+18^{2} & =c^{2} \\
400+324 & =c^{2} \\
724 & =c^{2} \\
26.09 & =c
\end{aligned}
$$

Approximately 27 feet

Ex: A soccer player makes a corner kick to another player as shown below. How far is the kick, to the nearest yard?

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
40^{2}+12^{2} & =c^{2} \\
1600+144 & =c^{2} \\
1744 & =c^{2} \\
41.76 & =c
\end{aligned}
$$

Approximately 42 yards

CONVERSE OF THE PYTHAGOREAN THEOREM: If a triangle has side lengths a, b and c such that $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.
*If the Pythagorean Theorem works, then it's a right triangle. If not, then its not.

Tell whether the following side lengths could form a right triangle. Show or explain your work.

Ex: 8, 15, 17

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 8^{2}+15^{2}=17^{2} \\
& 64+225=289 \\
& 289=289
\end{aligned}
$$

Yes
No

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+8^{2} & =9^{2} \\
25+64 & =81 \\
89 & =81
\end{aligned}
$$

Ex: 5, 9, 8
Ex: 13, 12, 5

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
5^{2}+12^{2} & =13^{2} \\
25+144 & =169 \\
169 & =169
\end{aligned}
$$

Yes

