10.4: Use Square Roots to Solve Quadratic Equations

Goals: *Solve a quadratic equation by using square roots

*Identify the number of solutions a quadratic equation

To be able to use square roots the quadratic must be in the form:

Which means b =

*Want to isolate x^2 , which when it is isolate is a new equation called:

THINGS TO NOTICE

- If $x^2 = d$ and d > 0, then
- If $x^2 = d$ and d = 0, then
- If $x^2 = d$ and d < 0, then

Solve:

Ex:
$$2x^2 = 8$$

Ex:
$$m^2 - 18 = -18$$

Ex:
$$b^2 + 12 = 5$$

Ex:
$$3x^2 = 27$$

Ex:
$$p^2 + 12 = 12$$

Ex:
$$a^2 - 3 = -4$$

Ex:
$$c^2 - 25 = 0$$

Ex:
$$5w^2 + 12 = 8$$

Ex:
$$2x^2 + 11 = 11$$

Ex:
$$4z^2 = 9$$

Ex:
$$25s^2 = 49$$

Ex:
$$9m^2 = 100$$

Ex:
$$25x^2 = 16$$

Ex:
$$49b^2 + 64 = 0$$

Approximate the solutions using a calculator. (Round to the nearest hundredth)

Ex:
$$3x^2 - 11 = 7$$

Ex:
$$2x^2 - 10 = 6$$

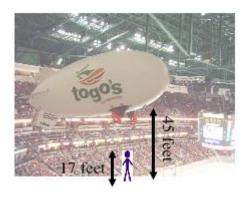
Ex:
$$x^2 + 4 = 14$$

Ex:
$$3k^2 - 1 = 0$$

Ex:
$$2p^2 - 7 = 2$$

Solve:

Ex:
$$6(x-4)^2 = 42$$


Ex:
$$4(x+6)^2 = 32$$

Ex:
$$2(x-2)^2 = 18$$

Ex:
$$4(q-3)^2 = 28$$

Ex:
$$3(t+5)^2 = 24$$

Ex: During a hockey game a remote-controlled blimp flies above the crowd and drops a numbered tennis ball. The number corresponds to a prize. Use the diagram to find the amount of time the ball is in the air.

