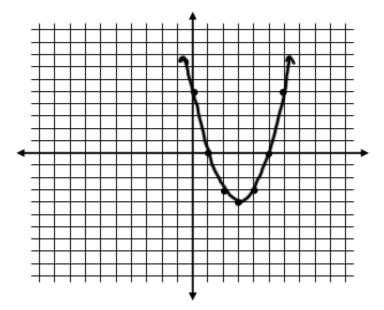
10.3: Solve Quadratic Equations by Graphing

Goals: *Identify solutions to a quadratic equation by graphing *Approximate solutions of a quadratic equation to the nearest tenth

RECALL

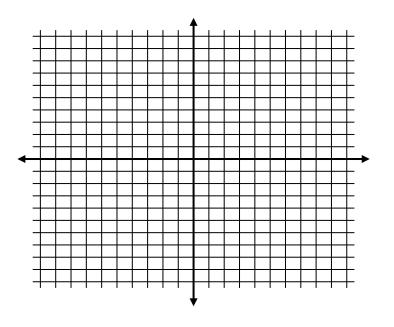
A **<u>quadratic equation</u>** is:

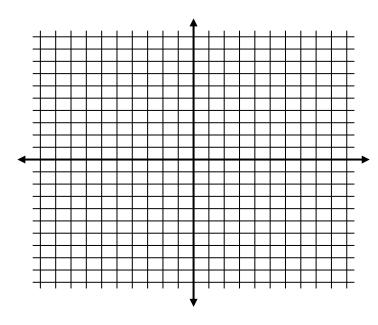

A **<u>solution</u>** to a quadratic equation can also be called a:

Solutions or ______ are the values of *x* so the quadratic equation is equal to:

**We already know how to solve a quadratic equation by:

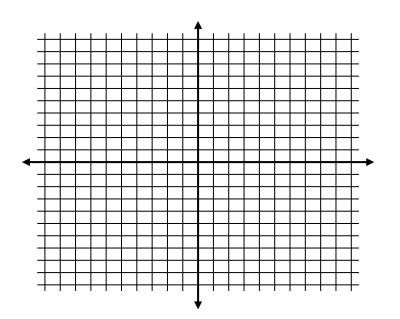
Since we know that solutions occur when y = 0, how can you identify solutions on a graph then?

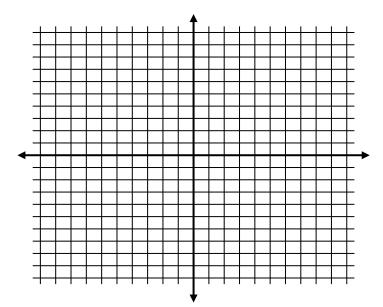

Ex: The graph below models the parabola formed by the quadratic equation $y = x^2 - 6x + 5$. What do you think the solutions are? Why?



Solve the following quadratic equations by graphing:

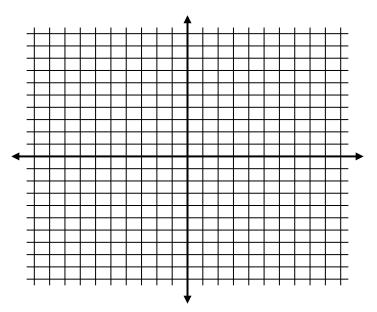
Ex: $x^2 - 2x = 3$


Ex:
$$-x^2 + 2x = 1$$



Ex: $x^2 + 7 = 4x$

Ex: $x^2 - 6x + 8 = 0$


Graph the following quadratic equations on a graphing calculator and identify the solutions.

Ex:
$$x^2 + 4x = 5$$
 Ex: $-x^2 - 6x = 9$ **Ex:** $x^2 + 4x = -6$

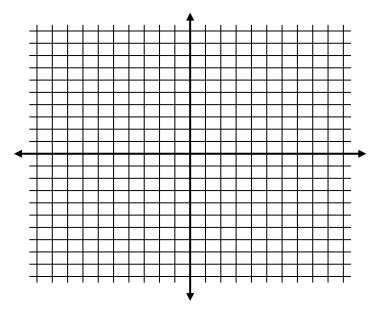
Ex:
$$x^2 + x = -1$$
 Ex: $-x^2 + 6x = 9$

Find the zeros of the function.

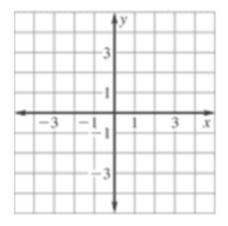
Ex:
$$f(x) = x^2 + 6x - 7$$

Approximate zeros to the nearest tenth:

1.



2.



x	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1
у									
x	-3.9	-3.8	-3.7	-3.6	-3.5	-3.4	-3.3	-3.2	-3.1
v									

Ex:
$$f(x) = x^2 + 7x + 6$$

Ex: $f(x) = x^2 + 4x + 1$

Ex: $f(x) = x^2 + x - 6$ **Ex:** $f(x) = -x^2 + 2x + 2$

Ex: An athlete throws a shot put with an initial vertical velocity of 40 ft/s.

a) Write an equation that models the height of the shot put as a function of the time it is in the air.

b) Use the equation to find the time the shot put is in the air.

Ex: A baseball player throws a ball into the air with an initial vertical velocity of 32 ft/s and is released at a height of 5 feet.

a) Write an equation that models the height of the ball based on time in the air.

b) Find out how long the ball is in the air.