10.3: Solve Ouadratic Equations by Graphing

Goals: *Identify solutions to a quadratic equation by graphing
*Approximate solutions of a quadratic equation to the nearest tenth

RECALL

A quadratic equation is:

A solution to a quadratic equation can also be called a:

Solutions or \qquad are the values of x so the quadratic equation is equal to:
**We already know how to solve a quadratic equation by:

Since we know that solutions occur when $y=0$, how can you identify solutions on a graph then?

Ex: The graph below models the parabola formed by the quadratic equation $y=x^{2}-6 x+5$. What do you think the solutions are? Why?

Solve the following quadratic equations by graphing:

Ex: $x^{2}-2 x=3$

Ex: $x^{2}+7=4 x$

$$
\text { Ex: }-x^{2}+2 x=1
$$

Ex: $x^{2}-6 x+8=0$

Graph the following quadratic equations on a graphing calculator and identify the solutions.
Ex: $x^{2}+4 x=5$
Ex: $-x^{2}-6 x=9$
Ex: $x^{2}+4 x=-6$

Ex: $x^{2}+x=-1$
Ex: $-x^{2}+6 x=9$

Find the zeros of the function.
Ex: $f(x)=x^{2}+6 x-7$

Approximate zeros to the nearest tenth:
1.
2.
3.

\boldsymbol{x}	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1
\boldsymbol{y}									

\boldsymbol{x}	-3.9	-3.8	-3.7	-3.6	-3.5	-3.4	-3.3	-3.2	-3.1
\boldsymbol{y}									

Use a graphing calculator to solve.

Ex: $f(x)=x^{2}+x-6$
Ex: $f(x)=-x^{2}+2 x+2$

Ex: An athlete throws a shot put with an initial vertical velocity of $40 \mathrm{ft} / \mathrm{s}$.
a) Write an equation that models the height of the shot put as a function of the time it is in the air.
b) Use the equation to find the time the shot put is in the air.

Ex: A baseball player throws a ball into the air with an initial vertical velocity of $32 \mathrm{ft} / \mathrm{s}$ and is released at a height of 5 feet.
a) Write an equation that models the height of the ball based on time in the air.
b) Find out how long the ball is in the air.

