10.1: Graph $y = ax^2 + c$

Goals: *Graph quadratic functions by making a table

- *Identify the vertex of a parabola
- *Identify whether a quadratic function will have minimum or maximum point without graphing
- *Identify characteristics of a parabola based on a quadratic equation

RECALL (from Ch. 9) quadratic function: $y = ax^2 + bx + c$

parabola: U-shaped graph obtained by graphing a quadratic equation

Ex: Graph $y = x^2$ by making a table:

x	-3	-2	-1	0	1	2	3
y	9	4	1	0	1	4	9

 $y = x^2$ is called the "Parent quadratic function" you compare all other quadratic functions to it.

vertex: The highest (maximum) or lowest (minimum) point on a parabola

axis of symmetry: The **LINE** that passes through the vertex and divides the parabola into two symmetrical parts

OBSERVATIONS

- a) Graph the following quadratic functions. Graph the odds by making a table and graph the evens by using a graphing calculator and copying it onto the graph provided.
- b) For each parabola identify the vertex and axis of symmetry.
- c) Compare each parabola to $y = x^2$ and begin to come up with some observations about characteristics of parabolas as they compare to their quadratic equations. (Ex: Direction it is facing/opening, narrowness/wideness, vertex)

1.
$$y = 2x^2$$

x	-3	-2	-1	0	1	2	3
y	18	8	2	0	2	8	18

Vertex: __(0, 0)_____

Axis of Symmetry: $\underline{\qquad} x = 0$

3.
$$y = -2x^2$$

x	-3	-2	-1	0	1	2	3
y	-18	-8	-2	0	-2	-8	-18

Vertex: ____(0, 0)_____

Axis of Symmetry: $\underline{} x = 0$

2.
$$y = 3x^2$$

Vertex: __(0, 0)_____

Axis of Symmetry: $\underline{\qquad} x = 0$

4.
$$y = -3x^2$$

Vertex: _____(0, 0)_____

Axis of Symmetry: $_x = 0$ _____

5.
$$y = \frac{1}{2}x^2$$

x	-6	-4	-2	0	2	4	6
y	18	8	2	0	2	8	18

Vertex: ____(0, 0)_____

Axis of Symmetry: $\underline{} x = 0$

7.
$$y = 5x^2$$

	-3						
y	45	20	5	0	5	20	45

Vertex: ____(0, 0)_____

Axis of Symmetry: $\underline{} x = 0$

6.
$$y = \frac{1}{4}x^2$$

Vertex: _____(0, 0)_____

Axis of Symmetry: $_x = 0$ ____

8.
$$y = -4x^2$$

Vertex: _____(0, 0)_____

Axis of Symmetry: $_x = 0$

9.
$$y = x^2 + 5$$

x	-3	-2	-1	0	1	2	3
у	14	9	6	5	6	9	14

Vertex: ____(0, 5)_____

Axis of Symmetry: $\underline{\hspace{1cm}} x = 0$

11.
$$y = x^2 + 4$$

x	-3	-2	-1	0	1	2	3
y	13	8	5	4	5	8	13

Vertex: __(0, 4)_____

Axis of Symmetry: $\underline{} x = 0$

10.
$$y = x^2 - 1$$

Vertex: __(0, -1)_____

Axis of Symmetry: $\underline{} x = 0$

12.
$$y = x^2 - 2$$

Vertex: __(0, -2)_____

Axis of Symmetry: $\underline{x} = 0$

Now use your observations to sketch the graphs of the following quadratic functions:

1.
$$y = \frac{1}{2}x^2 - 4$$

2.
$$y = -\frac{3}{2}x^2 - 2$$

3.
$$y = 3x^2 - 6$$

4.
$$y = -5x^2 + 1$$

- What makes a parabola narrower? If |a| > 1, then the parabola will be narrower
- What makes a parabola wider? If |a| < 1, then the parabola will be wider
- What makes a parabola open facing upward (U- shaped)? If a > 0, the parabola opens upward
- What makes a parabola open facing downward (\cap -shaped)? If a < 0, the parabola opens downward

- What shifts a parabola up on the y-axis? If c is being added (positive), then the parabola shifts up
- What shifts a parabola down on the y-axis? If c is being subtracted (negative) then the parabola shifts down