Goals: *Graph quadratic functions by making a table
*Identify the vertex of a parabola
*Identify whether a quadratic function will have minimum or maximum point without graphing *Identify characteristics of a parabola based on a quadratic equation

RECALL (from Ch. 9) quadratic function: $y=a x^{2}+b x+c$

parabola: U-shaped graph obtained by graphing a quadratic equation

Ex: Graph $y=x^{2} \quad$ by making a table:

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	9	4	1	0	1	4	9

$y=x^{2}$ is called the "Parent quadratic function" you compare all other quadratic functions to it.

vertex: The highest (maximum) or lowest (minimum) point on a parabola
axis of symmetry: The LINE that passes through the vertex and divides the parabola into two symmetrical parts

OBSERVATIONS

a) Graph the following quadratic functions. Graph the odds by making a table and graph the evens by using a graphing calculator and copying it onto the graph provided.
b) For each parabola identify the vertex and axis of symmetry.
c) Compare each parabola to $y=x^{2}$ and begin to come up with some observations about characteristics of parabolas as they compare to their quadratic equations. (Ex: Direction it is facing/opening, narrowness/wideness, vertex)

1. $y=2 x^{2}$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	18	8	2	0	2	8	18

Vertex: __(0,0) \qquad
Axis of Symmetry: \qquad $x=0$ \qquad

3. $y=-2 x^{2}$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	-18	-8	-2	0	-2	-8	-18

Vertex: __(0,0)
Axis of Symmetry: ___x=0 \qquad

2. $y=3 x^{2}$

Vertex: __(0, 0) \qquad
Axis of Symmetry: __ $x=0$

4. $y=-3 x^{2}$

Vertex: \qquad $(0,0)$ \qquad
Axis of Symmetry: _x $=0$ \qquad

$$
\begin{aligned}
& \text { 5. } y=\frac{1}{2} x^{2} \\
& \begin{array}{|c|c|c|c|c|c|c|c|}
\hline \boldsymbol{x} & -6 & -4 & -2 & 0 & 2 & 4 & 6 \\
\hline \boldsymbol{y} & 18 & 8 & 2 & 0 & 2 & 8 & 18 \\
\hline
\end{array}
\end{aligned}
$$

Vertex: __($(0,0)$
Axis of Symmetry: ___ $x=0$ \qquad

7. $y=5 x^{2}$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	45	20	5	0	5	20	45

Vertex: __(0,0) \qquad
Axis of Symmetry: __x $x=0$

6. $y=\frac{1}{4} x^{2}$

Vertex: \qquad $(0,0)$ \qquad
Axis of Symmetry: $_x=0$ \qquad

8. $y=-4 x^{2}$

Vertex: \qquad $(0,0)$ \qquad
Axis of Symmetry: _x $=0$ \qquad

9. $y=x^{2}+5$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	14	9	6	5	6	9	14

Vertex:
__(0,5) \qquad
Axis of Symmetry: \qquad $x=0$ \qquad

11. $y=x^{2}+4$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}	13	8	5	4	5	8	13

Vertex: __(0, 4) \qquad
Axis of Symmetry: ___ $x=0$ \qquad

10. $y=x^{2}-1$

Vertex: __(0,-1) \qquad
Axis of Symmetry: \qquad $x=0$

12. $y=x^{2}-2$

Vertex: __(0,-2) \qquad
Axis of Symmetry: \qquad $x=0$ \qquad

Now use your observations to sketch the graphs of the following quadratic functions:

1. $y=\frac{1}{2} x^{2}-4$

2. $y=-\frac{3}{2} x^{2}-2$

3. $y=3 x^{2}-6$

THOUGHTS TO CONSIDER

- What makes a parabola narrower? If $|a|>1$, then the parabola will be narrower
- What makes a parabola wider? If $|a|<1$, then the parabola will be wider
- What makes a parabola open facing upward (U-shaped)? If $a>0$, the parabola opens upward
- What makes a parabola open facing downward (\cap-shaped)? If $a<0$, the parabola opens downward
- What shifts a parabola up on the y-axis? If c is being added (positive), then the parabola shifts up
- What shifts a parabola down on the y-axis? If c is being subtracted (negative) then the parabola shifts down

