<u>1.7: Represent Functions as Graphs</u>

Goals: *Graph ordered pairs (*x*, *y*) *Graph functions so you can visualize trends *Decide if a graph represents a function based on the "vertical line test"

RECALL

Coordinate Plane

To graph ordered pairs:

Ex: Graph, and label, the following ordered pairs.

A (5, 4)B (3, -7)C (-1, 2)D (-6, -5)E (7, 0)F (0, -2)G (-3, 0)H (-1, 2.5)

Ex: Graph the function $y = \frac{1}{2}x$ with a domain of 0, 2, 4, 6, 8

Ex: Graph the function y = 2x - 3 with a domain of 2, 3, 4, 5

Ex: Graph the function y = 2x - 1 with a domain of 1, 2, 3, 4, 5

Ex: The table shows the average score, s, on the mathematics section of the SAT in the United States from 1997 to 2003 as a function of time, t, since 1997. In the table, 0 corresponds to the year 1997, 1 to 1998 and so on. Graph the function. What trend, if any, do you notice?

Years since 1997, t	0	1	2	3	4	5	6
Average score, s	511	512	511	514	514	516	519

Keep in mind that the time row really represents years SINCE 1997, so 0 means 0 years since 1997, which is the year 1997, 1 is 1 year since 1997, which would be 1998 and so on.

Also, the score row starts at 511 and all the data is fairly close together (only 8 numbers away from each other) so while each box on the graph can still represent 1 space, we need to make the graph jump to somewhere close to 511 by using a break, represent by the two lines in the graph.

For each graph given, write a rule for the function, then identify the domain and range.

*If necessary you can use the same rules as before ($\Delta y/\Delta x$ method) if you first use the points on the graph to create an x/y table.

5	5	4	3	2	1	
6	6	5		4	3 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		5	4 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ex:

y = 5x + 5

y = 5 - x