1.7: Represent Functions as Graphs

Goals: *Graph ordered pairs (x, y)
*Graph functions so you can visualize trends
*Decide if a graph represents a function based on the "vertical line test"
RECALL
Coordinate Plane

To graph ordered pairs:

1. Start at the \qquad origin \qquad -
2. First go \qquad left \qquad or \qquad right \qquad .
3. Then go \qquad up \qquad or \qquad down \qquad .

Ex: Graph, and label, the following ordered pairs.
A $(5,4)$
B $(3,-7)$
C ($-1,2$)
D (-6, -5)
E $(7,0)$
F $(0,-2)$
G $(-3,0)$
H $(-1,2.5)$

Ex: Match the ordered pairs with correct point on the graph.

$$
\begin{aligned}
& (-7,2)=A \\
& (6,0)=F \\
& (8,9)=G \\
& (-4,-3)=C \\
& (0,5)=D \\
& (-3,0)=B \\
& (3.5,-1)=E
\end{aligned}
$$

Ex: Graph the function $y=1 / 2 x$ with a domain of $0,2,4,6,8$

Ex: Graph the function $y=2 x-3$ with a domain of $2,3,4,5$

Ex: Graph the function $y=2 x-1$ with a domain of $1,2,3,4,5$

Ex: The table shows the average score, s, on the mathematics section of the SAT in the United States from 1997 to 2003 as a function of time, t, since 1997. In the table, 0 corresponds to the year 1997, 1 to 1998 and so on. Graph the function. What trend, if any, do you notice?

Years since 1997, t	0	1	2	3	4	5	6
Average score, s	511	512	511	514	514	516	519

Keep in mind that the time row really represents years SINCE 1997, so 0 means 0 years since 1997, which is the year 1997, 1 is 1 year since 1997, which would be 1998 and so on.

Also, the score row starts at 511 and all the data is fairly close together (only 8 numbers away from each other) so while each box on the graph can still represent 1 space, we need to make the graph jump to somewhere close to 511 by using a break, represent by the two lines in the graph.

For each graph given, write a rule for the function, then identify the domain and range.

Ex:

Ex:

*If necessary you can use the same rules as before ($\Delta y / \Delta x$ method) if you first use the points on the graph to create an x / y table.

x	1	2	3	4	5
y	2	3	4	5	6

x	1	3	5	7
y	0	2	4	6

$$
y=x+1
$$

$$
y=x-1
$$

Ex:

or

$$
y=5-x
$$

Ex:

