1.7: Represent Functions as Graphs

Goals: *Graph ordered pairs (x, y)
*Graph functions so you can visualize trends
*Decide if a graph represents a function based on the "vertical line test"
RECALL
Coordinate Plane

To graph ordered pairs:

1. Start at the \qquad .
2. First go \qquad or \qquad .
3. Then go \qquad or \qquad .

Ex: Graph, and label, the following ordered pairs.
A $(5,4)$
B $(3,-7)$
C (-1, 2)
D (-6, -5)
E $(7,0)$
F $(0,-2)$
G $(-3,0)$
H ($-1,2.5$)

Ex: Match the ordered pairs with correct point on the graph.

$(-7,2)=$
$(6,0)=$
$(8,9)=$
$(-4,-3)=$
$(0,5)=$
$(-3,0)=$
$(3.5,-1)=$

Ex: Graph the function $y=1 / 2 x$ with a domain of $0,2,4,6,8$

Ex: Graph the function $y=2 x-3$ with a domain of $2,3,4,5$

Ex: Graph the function $y=2 x-1$ with a domain of $1,2,3,4,5$

Ex: The table shows the average score, s, on the mathematics section of the SAT in the United States from 1997 to 2003 as a function of time, t, since 1997. In the table, 0 corresponds to the year 1997, 1 to 1998 and so on. Graph the function. What trend, if any, do you notice?

Years since 1997, t	0	1	2	3	4	5	6
Average score, s	511	512	511	514	514	516	519

Years since 1997, t

For each graph given, write a rule for the function, then identify the domain and range.

Ex:

Ex:

Ex:

Ex:

