1.6: Represent Functions as Rules and Tables

Goals: *Identify whether a pairing as a function
*Identify domain and range of a function
*Identify dependent and independent variables
*Make tables for functions
*Write rules for functions

Function: a relationship between _2 \qquad variables called \qquad input \qquad and
\qquad output \qquad .
\qquad ONE \qquad OUTPUT \qquad !!

Domain: the set of all __input \qquad values

Range: the set of all \qquad output \qquad values

Ex: Tell whether each pairing is a function. If yes, state the domain and range. If no, say why.

No, 0 has two outputs
C)

Input	Output
3	1
6	2
9	2
12	1

Input	Output
0	0
1	2
4	8
6	12

Yes, each input has 1 output
Domain: 0, 1, 4, 6
Range: 0, 2, 8, 12
D)

Input	2	2	4	7
Output	0	1	2	3

Yes, each input has one output
Domain: 3, 6, 9, 12
Range: 1,2
*You can represent a function in 3 ways:
a) Verbal Rule
b) Equation
c) Table
"The output is 3 more than the input" $y=3+x$

\boldsymbol{x}	0	1	2	3
\boldsymbol{y}	3	4	5	6

For the following functions, make a table and identify the range.
Ex: Function is $y=2 x$ with a domain of $0,2,5,7,8$

\boldsymbol{x}	0	2	5	7	8
\boldsymbol{y}	0	4	10	14	16

Range: 0, 4, 10, 14, 16

Ex: Function is $y=x-5$ with a domain of $10,12,15,18,29$

\boldsymbol{x}	10	12	15	18	29
\boldsymbol{y}	5	7	10	13	24

Range: 5, 7, 10, 13, 24

To write a rule for a function:

1. Start with \qquad $=$ \qquad
2. Find out what is happening to \qquad to get \qquad y \qquad
3. Check that it works for all \qquad inputs \qquad !

Write a rule for each function.

Ex:

Input (x)	0	1	4	6	10
Output (y)	2	3	6	8	12

$$
y=x+2
$$

Ex:

Input	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{9}$
Output	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{8}$

$y=x-1$

Ex:

Time (hrs)	1	2	3	4
Pay (\$)	8	16	24	32

$$
y=8 x
$$

Writing a rule for a function: (*don't forget all functions start with: \qquad $y=$ \qquad
Δ is the Greek letter \qquad Delta \qquad . In math, it means \qquad change \qquad in__

Ex: ΔT would mean to find:
If it was 59° this morning and it is 65° now, what is $\Delta \mathrm{T} ? \quad \Delta \mathrm{~T}=6^{\circ}$

1. Find Δx "how much does \qquad x change by each time?"
2. Find Δy "how much does \qquad change by each time?"

3. Set up a fraction: $\frac{\Delta y}{\Delta x}$ Simplify if possible. DO NOT MAKE A DECIMAL!

4. This number (the one you get from the fraction) becomes the __coefficient___ of x in your function. (This mean it
\qquad multiplies \qquad x)
5. Check to see if your function works by putting in __inputs \qquad and seeing if you get the correct \qquad output \qquad . If not, adjust your function by adding or subtracting.

Write a rule for each function, using the steps provided.

Ex:

\boldsymbol{x}	\boldsymbol{y}
0	1
2	5
4	9
6	13

$$
\Delta x=2 \quad \Delta y=4
$$

$\frac{4}{2}=2$ so in your function, 2 will be the coefficient (multiplier of x)
$y=2 x$ If you put in the first input of 0 , you would get out a 0 , but you want a
1 , so adjust your function by adding 1 . Then check for all other inputs.

$$
y=2 x+1
$$

Ex:

\boldsymbol{x}	1	4	7	10
\boldsymbol{y}	1	10	19	28

$$
y=3 x-2
$$

