1.6: Represent Functions as Rules and Tables

Goals: *Identify whether a pairing as a function
*Identify domain and range of a function
*Identify dependent and independent variables
*Make tables for functions
*Write rules for functions

Function: a relationship between \qquad variables called \qquad and
\qquad -.
\qquad !!

Domain: the set of all \qquad values

Range: the set of all \qquad values

Ex: Tell whether each pairing is a function. If yes, state the domain and range. If no, say why.
A)

B)

Input	Output
0	0
1	2
4	8
6	12

C)

Input	Output
3	1
6	2
9	2
12	1

D)

Input	2	2	4	7
Output	0	1	2	3

*You can represent a function in 3 ways:
a)
b)
c)

For the following functions, make a table and identify the range.
Ex: Function is $y=2 x$ with a domain of $0,2,5,7,8$

Ex: Function is $y=x-5$ with a domain of $10,12,15,18,29$

To write a rule for a function:

1. Start with \qquad
2. Find out what is happening to \qquad to get \qquad
3. Check that it works for all \qquad !

Write a rule for each function.

Ex:

Input (x)	0	1	4	6	10
Output (y)	2	3	6	8	12

Ex:

Input	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{9}$
Output	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{8}$

Ex:

Time (hrs)	1	2	3	4
Pay (\$)	8	16	24	32

Writing a rule for a function: (*don't forget all functions start with:
\qquad)
Δ is the Greek letter \qquad . In math, it means \qquad
Ex: ΔT would mean to find:
If it was 59° this morning and it is 65° now, what is $\Delta \mathrm{T}$?

1. Find Δx "how much does \qquad change by each time?"
2. Find Δy "how much does \qquad change by each time?"
3. Set up a fraction: \qquad Simplify if possible. DO NOT MAKE A DECIMAL!
4. This number (the one you get from the fraction) becomes the
\qquad of x in your function. (This mean it \qquad \boldsymbol{x})
5. Check to see if your function works by putting in \qquad and seeing if you get the correct \qquad . If not, adjust your function by adding or subtracting.

Write a rule for each function, using the steps provided.
Ex:

\boldsymbol{x}	\boldsymbol{y}
0	1
2	5
4	9
6	13

Ex:

\boldsymbol{x}	1	4	7	10
\boldsymbol{y}	1	10	19	28

