Pythagorean Theorem
 Study Guide

11.4: Apply the Pythagorean Theorem

- Be able to use the Pythagorean Theorem to find missing sides of right triangles

Ex: $a=30, b=40$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
30^{2}+40^{2} & =c^{2} \\
900+1600 & =c^{2} \\
2500 & =c^{2} \\
\sqrt{2500} & =\sqrt{c^{2}} \\
50 & =c
\end{aligned}
$$

Ex: A leg: 15; Hypotenuse: 25
Always start by writing formula $\quad a^{2}+b^{2}=c^{2}$
Plug in numbers.
$15^{2}+b^{2}=25^{2} *$ since 25 is the $225+b^{2}=625$ hypotenuse it takes $\underline{-255-225}$ the place of c !)

$$
b^{2}=400
$$

$\sqrt{b^{2}}=\sqrt{400}$

$$
b=20
$$

Ex:
4 yds

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 4^{2}+b^{2}=9^{2} \quad * \text { since } 9 \text { is across from the right angle } \\
& 16+b^{2}=81 \quad \text { it takes the place of } c!\text {) } \\
& -16 \quad-16 \\
& b^{2}=65 \\
& \sqrt{b^{2}}=\sqrt{65} \\
& b=8.06
\end{aligned}
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
12^{2}+5^{2} & =c^{2} \\
144+25 & =c^{2} \\
169 & =c^{2} \\
\sqrt{169} & =\sqrt{c^{2}} \\
13 & =c
\end{aligned}
$$

- Be able to use the Pythagorean Theorem to decide if three sides could form a right triangle

Ex: 9, 15, 20

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
9^{2}+15^{2}=20^{2} \\
81+225=400 \\
306=400 \\
\text { No }
\end{gathered}
$$

Ex: 12, 72, 71

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
12^{2}+71^{2}=72^{2} \\
144+5041=5184 \\
5185=5184 \\
\text { Yes }
\end{gathered}
$$

*Don't forget that 72 must go in the place of c because it's the longest side.

- Use Pythagorean Theorem to solve real-world problems

Ex: The playing bed of a pool table is in the shape of a rectangle, which measures 154 inches by 20 inches. What is the length of the diagonal of the table? Round your answer to the nearest inch.

