Pythagorean Theorem Study Guide

Always start by writing formula

<u>11.4: Apply the Pythagorean Theorem</u>

- Be able to use the Pythagorean Theorem to find missing sides of right triangles

Plug in numbers.

Ex: *a* = 30, *b* = 40

Ex: A leg: 15; Hypotenuse: 25

$$a^{2} + b^{2} = c^{2}$$

$$30^{2} + 40^{2} = c^{2}$$

$$900 + 1600 = c^{2}$$

$$2500 = c^{2}$$

$$\sqrt{2500} = \sqrt{c^{2}}$$

$$50 = c$$

 $a^{2} + b^{2} = c^{2}$ $15^{2} + b^{2} = 25^{2} \text{ since } 25 \text{ is the}$ $225 + b^{2} = 625 \text{ hypotenuse it takes}$ $\underline{-255 \quad -225} \text{ the place of } c!)$ $b^{2} = 400$ $\sqrt{b^{2}} = \sqrt{400}$ b = 20

- Be able to use the Pythagorean Theorem to decide if three sides could form a right triangle Ex: 9, 15, 20 Ex: 12, 72, 71

$a^2 + b^2 = c^2$
$12^2 + 71^2 = 72^2$
144 + 5041 = 5184
5185 = 5184
Yes

*Don't forget that 72 must go in the place of *c* because it's the longest side.

- Use Pythagorean Theorem to solve real-world problems

Ex: The playing bed of a pool table is in the shape of a rectangle, which measures 154 inches by 20 inches. What is the length of the diagonal of the table? Round your answer to the nearest inch.

$$a^{2} + b^{2} = c^{2}$$

$$154^{2} + 20^{2} = c^{2}$$

$$23716 + 400 = c^{2}$$

$$24116 = c^{2}$$

$$\sqrt{24116} = \sqrt{c^{2}}$$

$$c = 155.3 \text{ inches}$$

