Chapter 6: Solving Linear Inequalities
 Study Guide

6.1-6.3: Solve Inequalities by Multiplication and Division:

Solve each inequality and graph your solution on a number line.

Ex: $2 x-1 \geq 7$
$x \geq 4$

Ex: $-5 \geq 2 x-3$
$-1 \geq x$

Ex: $18>-4 x+2$
$-4<x$

6.3*: Solve Multi-Step Inequalities:

Solve each inequality.

Ex: $6(2 x+3) \geq 9(x+2)$
$x \geq 0$

Ex: $3(4 x-2)<2(6 x-2)$
any number

Ex: $-2(x+4) \geq-2 x-3$
Ex: $-4(x-2) \geq-x+16$

No solution

Ex: The photography club at your school decides to publish a calendar to make money. The cost to make all of the calendars is $\$ 600$ and they plan to sell the calendars at $\$ 5.50$ each. The club wants to make at least $\$ 1200$. a) Write an inequality to show the number of calendars the photography club would need to sell in order to meet their goal.

$$
5.5 x-600 \geq 1200
$$

b) Solve your inequality.

$$
x \geq 327.3
$$

c) Explain using 3-5 complete sentences, what the solution means, including possible numbers of calendars the club could sell and one possible number of calendars that would not work.

Include in your solution that x must be greater than or equal to 327.3 , which means that the club would need to sell at least 328 calendars or much. Provide possible numbers of calendars they could sell and provide possible numbers they could not.

Decide if an ordered pair is a solution to an inequality.
Ex: $\frac{3}{4} x-\frac{1}{3} y<6 ; \quad(-8,12)$
Yes

Ex: $(-1,1)$ No

Graph linear inequalities in two variables.

Ex: $y \geq 3 x-4$

Ex: $x<y$

Ex: A concert promoter needs to take in at least $\$ 380,000$ from ticket sales. The promoter charges $\$ 30$ for floor seats and $\$ 20$ for bleacher seats.
a) Write an inequality to represent the situation.

$$
30 x+20 y \geq 380,000
$$

b) Graph the inequality.

Use x and y intercepts. Test the origin.
c) Identify a possible combination that would allow the promoter to meet his goal.
*choose anything from the shaded region and be sure to label correctly

