Study Guide
 Chapter 1 Test
 Answer Key

1.1: Evaluate expressions and powers

- Be able to substitute variables and perform operations including exponents

Ex: Evaluate when $a=10, b=3, x=2$
$a x-x b^{2}$
$(10)(2)-(2)\left(3^{2}\right)$
20-18
2

1.2: Evaluate order of operations

- Be able to follow PEMDAS in order to solve problems

Ex: $\left[2-\left(3^{2}-8\right)\right]+3\left[1+(6-2)^{2}\right]$

$$
[2-(9-8)]+3\left[1+(4)^{2}\right]
$$

Ex: Evaluate when $x=5, y=3, z=7$
Ex: Evaluate x^{3} when $x=0.7$
$0.7 \cdot 0.7 \cdot 0.7$
0.343

$$
\frac{x z-y}{x+y}
$$

$$
[2-1]+3[1+16]
$$

$$
\frac{(5)(7)-3}{5+3}
$$

$$
1+3[17]
$$

$$
\frac{35-3}{8}
$$

$$
1+51
$$

52

1.3-1.4: Write expressions, equations and inequalities

- Identify key words to translate verbal phrases into algebraic expressions, equations or inequalities

Ex: 5 less than 6 more than a number x

$$
(6+x)-5
$$

Ex: the quotient of a number t and 5 is at least 20

$$
\frac{t}{5} \geq 20
$$

$\underline{\text { Ex: }}$ the product of 6 and the sum of p and 8 is 42

$$
6(p+8)=42
$$

-Set up rates and unit rates

Ex: Which is the better buy...a 16 -ounce bottle of Gatorade for $\$ 1.99$ or a 34 -ounce jug for $\$ 4.05$? Explain how you know. (You may use a calculator)
$\frac{\$ 1.99}{16 \mathrm{oz}}=\frac{\$ 0.124}{1 \mathrm{oz}} \quad \frac{\$ 4.05}{34 \mathrm{oz}}=\frac{\$ 0.119}{1 \mathrm{oz}} \quad$ Since the 16 -oz bottle really means about $\$ 0.124$ per gallon and the 34 -ounce bottle really means $\$ 0.119$ per gallon, then the 34 -ounce bottle is slightly cheaper.

1.6-1.7: Represent Functions as Tables, Rules and Graphs

- Be able to identify functions, domain and range.
- Write a rule for a function
- Make a table for a function
- Graph a function

Ex: Is the following a pairing a function? If no, say when if yes identify domain and range.

\boldsymbol{x}	\boldsymbol{y}
0	8
5	10
10	8
15	6

Yes, each input has exactly one output. (it doesn't matter that 0 and 10 have the same output...they still each have one)
Domain: $0,5,10,15$ Range: 6, 8, 10

Ex: Is the following a pairing a function? If no, say when if yes identify domain and range.

\boldsymbol{x}	0	3	3	6	9
\boldsymbol{y}	1	7	19	23	6

No, 3 has two different outputs.

Ex: Write a rule for the given function.

\boldsymbol{x}	\boldsymbol{y}
7	21
9	25
11	29
13	33
15	37

$$
y=2 x+7
$$

Ex: Make a table for the given function and then graph.
$y=3 x-4$ with a domain of $1,3,7,8,12$

x	y
1	-1
3	5
7	17
8	20
12	32

