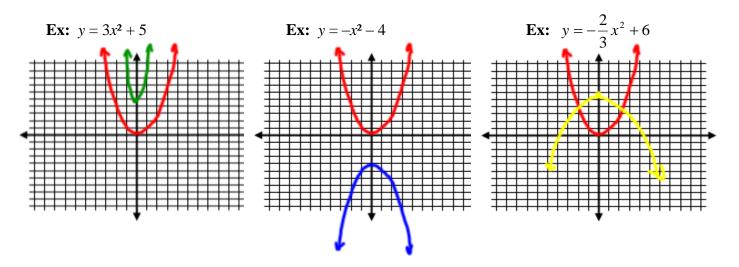

Chapter 10: Quadratic Equations and Functions Study Guide Answer Key

<u>10.1: Graph y = ax^2 + c:</u>


- Be able to graph a quadratic using a table and compare it to the parent function.

Graph the following quadratic equations by making a table. Compare the graph to the parent function.

- Be able to identify characteristics of quadratic equations based on *a* and *c* changing and sketch the resulting parabola.

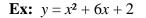
Sketch the parent function, then sketch the following parabolas based on the equation.

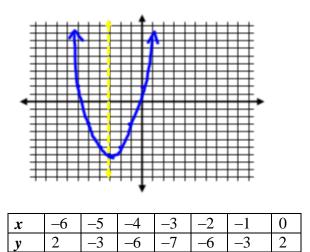
<u>10.2:</u> Graph $y = ax^2 + bx + c$:

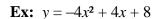
- Be able to find the axis of symmetry and vertex of a parabola.

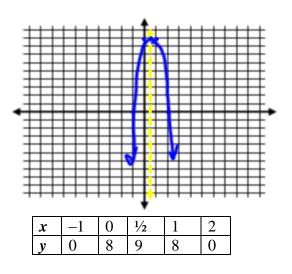
Find the axis of symmetry and vertex of each quadratic equation.

Ex: $y = 2x^2 - 8x + 6$	Ex: $y = -3x^2 + 24x - 22$
Axis of symm: $x = 2$	Axis of symm: $x = 4$
Vertex (2, -2)	Vertex: (4, 26)

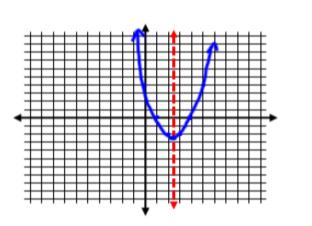

- Be able to tell if a quadratic equation has a maximum or minimum value, then find the max. or min.


Tell whether the function has a *minimum* or *maximum* value. Then find the min. or max. value.

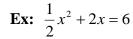

Ex: $f(x) = -3x^2 + 12x - 20$	Ex: $f(x) = 4x^2 + 32x$
Maximum value of –8	Minimum value of –64

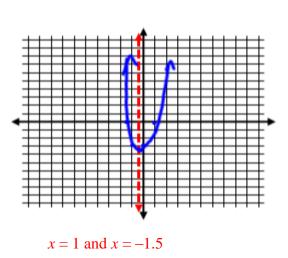

- Be able to graph a quadratic function in the form $y = ax^2 + bx + c$ by finding the axis of symmetry and vertex and making a symmetrical table about the axis.

Graph the quadratic function.

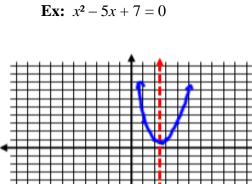


10.3: Solve Quadratic Equations by Graphing:

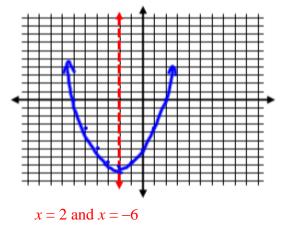

- Be able to solve an equation by graphing.


Solve the following quadratic equations by graphing.

Ex: $x^2 - 5x + 4 = 0$



x = 4 and x = 1



Ex: $2x^2 + x = 3$

no solution

- Be able to approximate zeros of a function to the nearest tenth by making a table.

Approximate the zeros of the function to the nearest tenth.

Ex:
$$f(x) = x^2 + 4x - 5$$
 Ex: $f(x) = -3x^2 + 8x - 2$

<u>10.4:</u> Use Square Roots to Solve Quadratic Equations:

- Be able to solve a quadratic equation using square roots

Solve the following quadratic equations.

Ex: $4x^2 - 400 = 0$	Ex: $3z^2 - 18 = -18$
$x = \pm 10$	z = 0
	$(-7)^2$
Ex: $3x^2 - 35 = 45 - 2x^2$	Ex: $11\left(\frac{w-7}{2}\right)^2 - 20 = 101$

 $x = \pm 4$ w = 13.63 and w = 0.37

<u>10.6:</u> Solve Quadratic Equations by the Quadratic Formula:

- Be able to solve quadratic equations by using the quadratic formula

Solve:

Ex: $x^2 + 5x - 104 = 0$	Ex: $4t^2 - 3t = 5 - 3t^2$	
x = 8 and $x = -13$	t = 1.09 and $t = -0.66$	

Ex: $x^2 - 8x = -16$	Ex: $(x + 13)^2 = 25$
-----------------------------	------------------------------

x = 4 x = -8 and x = -18

10.7: Interpret the Discriminant:

- Be able to identify the value of the discriminant and use it to determine the number of solutions to a quadratic equation.

Tell whether the equation has two solutions, one solution, or no solution.

Ex: $x^2 + x + 1 = 0$

Ex: $-2x^2 + 8x - 4 = 0$

Ex: $10 = x^2 - 5x$

Discriminant = -3, no solution

Discriminant = 32, two solutions

Ex:
$$-3g^2 - 4g = \frac{4}{3}$$

Discriminant = 0, one solution

Discriminant = 65, two solutions