9.4 – 9.5 Factoring Quadratic Equations Study Guide Questions

9.4: Factor Using the GCF -

You should be able to:

1. Identify the GCF of a quadratic expression and factor using this method.

Ex: $2x^2 - 4x$ becomes 2x(x-2) when factored. The circled portion would be your answer.

Factor using the GCF:

- **Ex:** $-4y + 16y^2$ -4y(1 - 4y) **Ex:** $3xy + 8xy^2$ xy(3 + 8y)
- 2. Solve a quadratic equation in factored form.

Ex: (3x-1)(x+2) = 0, since you are multiplying two quantities and the answer is 0, then one of the two quantities being multiplied must be equal to zero. This means either 3x - 1 = 0 or x + 2 = 0

If:
$$3x - 1 = 0$$
 you would:

$$\underbrace{+1 + 1}_{3 = 1}$$
first add 1 to both sides

$$\underbrace{3x = 1}_{x = \frac{1}{3}}$$
then divide by three so:

$$\underbrace{x = \frac{1}{3}}$$

$$If: x + 2 = 0 you would:
x + 2 = 0
-2 -2 subtract 2 so:
$$\underbrace{x = -2}$$$$

Solve:

Ex: x(2x-5) = 0 **Ex:** x(3x-7)(4x-1) = 0

$$x = 0$$
 or $x = \frac{5}{2}$ $x = 0, x = \frac{7}{3}$ or $x = \frac{1}{4}$

3. Solve a quadratic equation by factoring using the GCF first!

Ex:
$$7x^2 + 21x = 0$$

 $7x(x+3) = 0$ Factor using GCF of $7x$
So either $7x = 0$ or $x+3=0$
 $x=0$ or $x=-3$

Solve:

Ex:
$$8x^2 - 16x = 0$$
 Ex: $2x^2 = -7x$
 $8x(x-2) = 0$
 $2x^2 + 7x = 0$
 $8x = 0 \text{ or } x - 2 = 0$
 $x = 0 \text{ or } x = 2$
 $x = 0 \text{ or } x = 2$
 $x = 0 \text{ or } x = \frac{7}{2}$

4. Use the vertical motion model to solve problems involving a problem's height and time. ($h = -16t^2 + vt + s$)

Ex: An object is launched from the ground with an initial vertical velocity of 32 feet per second. How long before the object reaches the ground?

$h = -16t^2 + vt + s$	Set up equation.
$h = -16t^2 + 32t$	Substitute. (Initial height (s) is zero, and initial velocity (v) is 32 feet per second.)
$0 = -16t^2 + 32t$	Replace h with 0 since that will be the object's height when it reaches the ground.
0 = -16t(t - 2)	Factor using the GCF.
t = 0 or $t = 2$	Solve. Choose the answer that makes sense.
<i>t</i> = 2	

9.5: Factor Quadratics in the Form $x^2 + bx + c$:

You should be able to:

1. Factor trinomials in the form $x^2 + bx + c$ by factoring into two binomials in the form: (x+p)(x+q)*To find p and q you find the factors of c that add up to b.

Ex: $x^2 - 7x + 12$ becomes (x-3)(x-4) when factored because -4 and -3 first multiply to get +12, but also add up to -7.

Factor:

Ex.
$$x^2 - 2x - 24$$
Ex: $-x^2 - 9x - 18$ Ex: $3x^2 + 9x + 6$ $(x-6)(x+4)$ $-1(x+6)(x+3)$ $3(x+2)(x+1)$

2. Solve quadratic equations by factoring first.

Ex: $x^2 - 7x + 12 = 0$ (x-3)(x-4) = 0 x=3 or $x=4$	Factor first Solve	
Ex: $x^2 - 17x + 60 = 0$		Ex: $x^2 + 8x = -12$
(x-5)(x-12) = 0 x = 5 or x = 12		$x^{2} + 8x + 12 = 10$ (x + 6)(x + 2) = 0 x = -6 or x = -2

3. Use the vertical motion model to solve problems involving a problem's height and time. $(h = -16t^2 + vt + s)$

Ex: An object is launched from a height of 48 feet with an initial vertical velocity of 32 feet per second. How long before the object reaches the ground?

$h = -16t^2 + vt + s$	Set up equation.
$h = -16t^2 + 32t + 48$	Substitute. (Initial height is 48 feet, and
	initial velocity is 32 feet per second.)
$0 = -16t^2 + 32t + 48$	Replace <i>h</i> with 0 since that will be the
	object's height when it reaches the ground.
$0 = -16(t^2 - 2t - 3)$	Factor out GCF so coefficient of t^2 is 1.
0 = -16(t - 3)(t + 1)	Factor.
t = 3 or $t = -1$	Solve.
$t = 3 \sec \theta$	Choose the answer that makes sense.

4. Find the missing dimension of a rectangle given the area by factoring.

Area: 100 square inches Ex:

