9.4-9.5 Factoring Quadratic Equations
 Study Guide Questions

9.4: Factor Using the GCF -

You should be able to:

1. Identify the GCF of a quadratic expression and factor using this method.

Ex: $2 x^{2}-4 x$ becomes $2 x(x-2)$ when factored. The circled portion would be your answer.

Factor using the GCF:

$$
\mathbf{E x}:-4 y+16 y^{2} \quad \text { Ex: } 3 x y+8 x y^{2}
$$

2. Solve a quadratic equation in factored form.

Ex: $(3 x-1)(x+2)=0$, since you are multiplying two quantities and the answer is 0 , then one of the two quantities being multiplied must be equal to zero. This means either $3 x-1=0$ or $x+2=0$
If: $3 x-1=0$ you would:
$\frac{+1+1}{\underline{3 x}=\underline{1}}$
If: $x+2=0$ you would: $x+2=0$

$-2-2$
$x=-2$

$3 \quad 3$ then divide by three so:

$$
x=\frac{1}{3}
$$

Solve:
Ex: $x(2 x-5)=0$
Ex: $x(3 x-7)(4 x-1)=0$
3. Solve a quadratic equation by factoring using the GCF first!

Ex: $7 x^{2}+21 x=0$
$7 x(x+3)=0 \quad$ Factor using GCF of $7 x$
$\begin{array}{rlrr}\text { So either } 7 x=0 & \text { or } & x+3=0 \\ x=0 & \text { or } & x=-3\end{array}$

Solve:

Ex: $8 x^{2}-16 x=0$
Ex: $2 x^{2}=-7 x$
4. Use the vertical motion model to solve problems involving a problem's height and time. (
$\left.h=-16 t^{2}+v t+s\right)$

Ex: An object is launched from the ground with an initial vertical velocity of 32 feet per second. How long before the object reaches the ground?

9.5: Factor Quadratics in the Form $x^{2}+b x+c$:

You should be able to:

1. Factor trinomials in the form $x^{2}+b x+c$ by factoring into two binomials in the form:

$$
(x+p)(x+q)
$$

*To find p and q you find the factors of c that add up to b.
Ex: $x^{2}-7 x+12$ becomes $(x-3)(x-4)$ when factored because -4 and -3 first multiply to get +12 , but also add up to -7 .

Factor:

Ex. $x^{2}-2 x-24$
Ex: $-x^{2}-9 x-18$
Ex: $3 x^{2}+9 x+6$
2. Solve quadratic equations by factoring first.

$$
\begin{array}{cll}
\text { Ex: } & x^{2}-7 x+12=0 & \text { Factor first } \\
& (x-3)(x-4)=0 & \text { Solve } \\
& x=3 \text { or } x=4 &
\end{array}
$$

Ex: $x^{2}-17 x+60=0$
Ex: $x^{2}+8 x=-12$
3. Use the vertical motion model to solve problems involving a problem's height and time. ($\left.h=-16 t^{2}+v t+s\right)$

Ex: An object is launched from a height of 48 feet with an initial vertical velocity of 32 feet per second. How long before the object reaches the ground?
4. Find the missing dimension of a rectangle given the area by factoring.

Ex:
Area: 100 square inches

