7.3: Solve Systems of Equations by Adding or Subtracting

Goals: *Find the solution to a system of equations by eliminating a variable using addition or subtraction *Arrange systems so you can eliminate

By which two methods can you already solve a system?

Now you will be able to solve an equation by **<u>ELIMINATING</u>** a variable!!

Ex: 2x + 3y = 11-2x + 5y = 13

Ex:	4x + 3y = 2	Ex: $3x + 4y = 8$
	5x + 3y = -2	-3x + 5y = 10

Ex: 5x + 6y = 47x + 6y = 8**Ex:** 8x - 4y = -44y = 3x + 14

Ex: 9x - 3y = 183y = -7x + 30

7.4: Solve Systems of Equations by Multiplying

Goals: *Find the solution to a system of equations by eliminating a variable using multiplication

*Can you add or subtract these equations as they written and still eliminate one of the variables?

5x + 2y = 163x - 4y = 20

*Could you manipulate either equation so you COULD eliminate a variable?

Ex: 6x + 5y = 192x + 3y = 5

Ex: 2x + y = -94x + 11y = 9

Ex: 4x + 5y = 353x - 2y = 9

Ex: 3x - 7y = 59y = 5x + 5 **Ex:** During a kayaking trip a kayaker travels 12 miles upstream (against the current) and 12 miles downstream (with the current). It took 3 hours to go upstream and 2 hours to go downstream. The speed of the current stayed the same throughout the trip. Find the average speed of the kayaker and the average speed of the current.

Ex: A riverboat travels 28 miles upstream in 7 hours. It travels 28 miles downstream in 5 hours. Find the average speed of the riverboat and the current.