## 7.3: Solve Systems of Equations by Adding or Subtracting

Goals: *Find the solution to a system of equations by eliminating a variable using addition or subtraction
*Arrange systems so you can eliminate

By which two methods can you already solve a system?

Now you will be able to solve an equation by ELIMINATING a variable!!
Ex: $2 x+3 y=11$
$-2 x+5 y=13$
Ex: $4 x+3 y=2$
$5 x+3 y=-2$

Ex: $\begin{aligned} 3 x+4 y & =8 \\ -3 x+5 y & =10\end{aligned}$

Ex: $5 x+6 y=4$
$7 x+6 y=8$
Ex: $8 x-4 y=-4$
$4 y=3 x+14$

Ex: $9 x-3 y=18$
$3 y=-7 x+30$

## 7.4: Solve Systems of Equations by Multiplying

Goals: *Find the solution to a system of equations by eliminating a variable using multiplication
*Can you add or subtract these equations as they written and still eliminate one of the variables?
$5 x+2 y=16$
$3 x-4 y=20$
*Could you manipulate either equation so you COULD eliminate a variable?

Ex: $6 x+5 y=19$
$2 x+3 y=5$

Ex: $2 x+y=-9$
$4 x+11 y=9$

Ex: $4 x+5 y=35$
$3 x-2 y=9$

Ex: $3 x-7 y=5$
$9 y=5 x+5$

Ex: $2 x-3 y=6$
$4 y=-7 x-8$

Ex: During a kayaking trip a kayaker travels 12 miles upstream (against the current) and 12 miles downstream (with the current). It took 3 hours to go upstream and 2 hours to go downstream. The speed of the current stayed the same throughout the trip. Find the average speed of the kayaker and the average speed of the current.

Ex: A riverboat travels 28 miles upstream in 7 hours. It travels 28 miles downstream in 5 hours. Find the average speed of the riverboat and the current.

