7.3-7.5 Quiz Study Guide

7.3-7.4 Solve Systems of Equations by Eliminating a Variable:

- Be able to add or subtract equations to eliminate a variable in order to solve a system
Ex: $4 x-3 y=5$ $-2 x+3 y=-7$
Ex: $6 x-4 y=14$
$3 x-4 y=1$

Ex: $3 x+4 y=-6$ $2 y=3 x+6$

- Be able to multiplying equations first, then eliminate a variable, in order to solve a system

$$
\begin{aligned}
\text { Ex: } x+y & =2 \\
2 x+7 y & =9
\end{aligned}
$$

Ex: $4 x-3 y=8$
$5 x-2 y=-11$

7.5: Special Types of Linear Systems:

- Be able to identify when a system of equations has one solution, no solution or infinite solutions by solving using any method.

Ex: Solve by graphing:

$$
\begin{aligned}
& 3 x+2 y=10 \\
& y=-\frac{3}{2} x+1
\end{aligned}
$$

Ex: Solve by substitution:

$$
\begin{aligned}
& x-2 y=-4 \\
& y=\frac{1}{2} x+2
\end{aligned}
$$

Ex: Solve by elimination:
$2 x-3 y=6$
$2 x-3 y=-4$

- Be able to identify the number of solutions to system without actually solving it. Show and explain your reasoning.

$$
\text { Ex: } \begin{aligned}
5 x+3 y & =6 \\
-5 x-3 y & =3
\end{aligned}
$$

Ex: $y=2 x-4$
$-6 x+3 y=-12$

