## 7.1-7.4: Graphing, Substitution and Elimination Quiz Study Guide

## **7.1:** Solve Systems of Equations by Graphing:

- Be able to identify an ordered pair as a solution to a system Ex: Is (5, 2) a solution to the system: 2x - 3y = 42x + 8y = 11

No because if you plug in the ordered pair into **both** equations, it does not work.

- Be able to solve a system of equations by graphing Ex: Solve the system by graphing: 6x + 3y = -62y - 4x = 12



## 7.2: Solve Systems of Equations by Substitution:

| - Be able to solve a system of equations by substitution<br>Ex: $y = x - 2$<br>x = 17 - 4y | Ex: $5x + 2y = 9$ $x + y = -3$ $\frac{-x - x}{y = -3 - x}$                         |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| x = 17 - 4(x - 2)<br>x = 17 - 4x + 8<br>$\frac{+4x + 4x}{5x = 25}$<br>x = 5                | 5x + 2(-3 - x) = 9<br>5x + -6 - 2x = 9<br>3x - 6 = 9<br>+6 + 6<br>3x = 15<br>x = 5 |
| y = x - 2y = 5 - 2y = 3(5, 3)                                                              | y = -3 - x<br>y = -3 - 5<br>y = -8<br>(5, -8)                                      |

Ex: 
$$y = x - 4$$
  
 $y = 18 + 2x$   
 $x - 4 = 18 + 2x$   
 $-x - x$   
 $-4 = 18 + x$   
 $-18 - 18$   
 $-22 = x$   
 $y = x - 4$   
 $y = -22 - 4$   
 $y = -26$  (-22, -26)

- Be able to write an solve a linear system

**Ex:** During a football game the parents of football players sell pretzels and popcorn to raise money for new uniforms. They charge \$2.50 for a bag of popcorn and \$2 for a pretzel. The parents collect \$336 in sales during the game and sell twice as many bags of popcorn as pretzels. How many bags of popcorn do they sell? How many pretzels?

Let x = the number bags of popcorn sold Let y = the number of pretzels sold 2.5x + 2y = 336 Popcorn is \$2.50 each, pretzels are \$2. They made \$336 total. x = 2y There was more popcorn (x) sold, so y needs to be multiplied by 2 to make the two amounts equal. 2.5(2y) + 2y = 336

2.5(2y) + 2y = 336 5y + 2y = 336  $\frac{7y}{7} = \frac{336}{7}$  y = 48 x = 2y x = 2(48) x = 9696 bags of popcorn, 48 pretzels

## 7.3 – 7.4: Solve Systems of Equations by Eliminating a Variable:

- Be able to add or subtract equations to eliminate a variable in order to solve a system

| <b>Ex:</b> $4x - 3y = 5$ | <b>Ex:</b> $6x - 4y = 14$            |
|--------------------------|--------------------------------------|
| + -2x + 3y = -7          | -3x - 4y = 1                         |
| 2x = -2                  | 3x = 13                              |
| 2 2                      | 3 3                                  |
| x = -1                   | $x = \frac{13}{3}$ or $4\frac{1}{3}$ |

After plugging *x* into either equation, you would get the value for *y*.

$$= -3 y = 3 (-1, -3) (\frac{13}{3}, 3) (\frac{13}{3$$

**Ex:** 3x + 4y = -62y = 3x + 6

y

First you have to rewrite the equations so they are lined up. The first equation stays the same, you will subtract 3x in the second equation.

3x + 4y = -6+ -3x + 2y = 66y = 06 - 6y = 0Plug y into either equation to get x = -2(-2, 0)

- Be able to multiply equations first, then eliminate a variable, in order to solve a system

| <b>Ex:</b> $x + y = 2$ | <b>Ex:</b> $4x - 3y = 8$ |
|------------------------|--------------------------|
| 2x + 7y = 9            | 5x - 2y = -11            |

Multiply the first equation by 2. Now x matches.

2x + 2y = 4

-2x + 7y = 9

Multiply the top equation by 2 and multiply the bottom equation by 3. *Y* matches now. 8x - 6y = 16- 15x - 6y = -33

Subtract the equations from each other

 $\frac{-5y}{-5} = \frac{-5}{-5}$  y = 1 y = 1 y = 1 y = 1 y = 1 y = -7 y = -7

equation to find the other value.

$$x = 1 y = -12 (-7, -12)$$