6.4: Solve Compound Inequalities

Goals: *Translate the verbal phrase into an inequality and graph *Solve a compound inequality with "*and*" *Solve a compound inequality with "*or*"

Compound inequalities:

The graph of a compound inequality with "and" is the	of the graphs of the
inequalities.	

The graph of a compound inequality with "*or*" is the ______ of the graphs of the inequalities.

Ex: x > -2

<----

x ≤ 1

 $-2 < x \text{ and } x \leq 1 \rightarrow -2 < x \leq 1$

x < - 1

Ex: $x \ge 0$

.

x < -1 or $x \ge 0$

<-----

Name:

Translate the verbal phrase into an inequality, then graph the inequality.

Ex: All real numbers that are greater than -2 and less than 3

<----

Ex: All real numbers that are less than 0 *or* greater than or equal to 2

<-----

Ex: All real numbers that are less than -1 or greater than or equal to 4

<-----

Ex: All real numbers that are greater than or equal to -3 and less than 5

<-----

Ex: All real numbers that are greater than or equal to -4 and less than 4

Ex: All real numbers that are less than -1 *or* greater than 2

<-----

Name:

Ex: A crane sits on top of a camera car and faces toward the front. The crane's maximum height is 18 feet and the minimum height is 4 feet. Write and graph a compound inequality that describes the possible heights of the crane.

Ex: At an auction, the lowest bid for an autographed trading card is \$20. The highest bid is \$54. Write and graph a compound inequality that describes the possible bids.

<u>SOLVE</u> a compound inequality with "<u>AND</u>":

Ex: Solve 2 < x + 5 < 9 and graph your solution. (Hint: Separate into two separate inequalities)

Solve the compound inequalities below:

Ex: $-1 < x + 1 \le 7$

<-----

Ex: -7 < x - 5 < 4

Ex:	$10 \le 2y + 4 \le 24$	<++++++++++++++++++++++++++++++>
Ex:	-14 < x - 8 < -1	<
Ex:	-7< -z-1<3	<
Ex:	$-5 \leq -x-3 \leq 2$	<
Ex:	1 < -2x + 3 < 19	<>

Ex: $-1 \le -5t + 2 \le 4$

<----

Ex: An investor buys shares of stock and will sell them if the change *c* in value from the purchase price of a share is less than - \$3.00 or greater than \$4.50. Write and graph a compound inequality that describes the changes in value for which the shares will be sold.

<----

<u>SOLVE</u> a compound inequality with "<u>OR</u>":

Ex: 2x + 3 < 9 or 3x - 6 > 12

Ex: $3x - 2 \le -11$ or 2x + 8 > 16

Ex: 3h+1 < -5 or 2h-5 > 7

<----

Name:_____

Ex: $4c + 1 \le -3$ or 5c - 3 > 17

Ex: The Mars Exploration Rovers *Opportunity* and *Spirit* are robots that were sent to Mars in 2003 in order to gather geographical data about the planet. The temperature at the landing sites of the robots can range from $-100 \degree \text{C}$ or $0\degree \text{C}$.

a) Write a compound inequality that describes the possible temperatures (in degrees Fahrenheit) at a landing site. (Hint: Use the formula $C = \frac{5}{9}(F - 32)$)

b) Solve the inequality and graph your solution.

<-----

c) Identify three possible temperatures (in degrees Fahrenheit) at a landing site.