Study Guide

3.1-3.6 Quiz

3.1: Solve One-Step Equations

- Be able to use inverse operations to isolate the variable and solve one-step equations
Ex: $\quad \frac{7}{2} \cdot \frac{2}{7} n=-5 \cdot \frac{7}{2}$
Ex: $-5+x=-4$

$$
\frac{+5 \quad+5}{x=1}
$$

Ex: $1-x=-2$

3.2/3.3: Solve 2/Multi-Step Equations

- Be able to use inverse operations and reverse PEMDAS to solve multi-step equations

Ex: $4 w+2 w=24$

$$
\begin{gathered}
\frac{6 w}{6}=\frac{24}{6} \\
w=4
\end{gathered}
$$

$$
\text { Ex: } \begin{aligned}
& \frac{x}{2}+5=11 \\
& \frac{-5}{}-5 \\
& 2 \cdot \frac{x}{2}=6 \cdot 2 \\
& x=12
\end{aligned}
$$

Ex: $5 x-4(x-3)=17$

$$
\begin{array}{r}
5 x+-4(x+-3)=17 \\
5 x+-4 x+12=17 \\
1 x+12=17
\end{array}
$$

$$
\frac{-12 \quad-12}{x=5}
$$

Ex: $\frac{4}{3} \cdot \frac{3}{4}(z-6)=12 \cdot \frac{4}{3}$
Ex: $-4=2(x-2)-3(1-x) *$ rewrite subtraction as + neg.

$$
\begin{aligned}
z-6 & =16 \\
z & =22
\end{aligned}
$$

$$
-4=2 x-4-3+3 x
$$

$$
-4=5 x-7
$$

$$
\begin{array}{ll}
+7 & +7 \\
\hline
\end{array}
$$

$$
\frac{3}{5}=\frac{5 x}{5}
$$

$$
x=\frac{3}{5} \quad * \text { Keep answer as a fraction, not a decimal }
$$

3.4: Solve equations with variables on both sides

- Be able to solve equations with variables on both sides by moving variable terms together

Ex: $3 m-25-8 m=m-14$

$$
\begin{array}{r}
-5 m-25=m-14 \\
+5 m \quad+5 m \\
\hline-25=6 m-14 \\
+14 \quad+14 \\
\hline \frac{-11}{6}=\frac{6 m}{6} \\
m=-\frac{11}{6}
\end{array}
$$

$$
\text { Ex: } \begin{gathered}
4(m-3)=2(6-2 m) \\
4 m-12=12-4 m \\
+4 m \quad+4 m \\
\hline 8 m-12=12 \\
+12+12 \\
\frac{8 m}{8}=\frac{24}{8} \\
m=3
\end{gathered}
$$

- Be able to identify when an equation has no solution, infinite solutions or 0 as the solution
Ex: $-5(3 a-4)=7 a+27-7$
Ex: $5 z-6=(z-1) 5$

$$
\begin{gathered}
\frac{0}{22}=\frac{22 a}{22} \\
a=0
\end{gathered}
$$

Ex: $4(3 x+2)=2(6 x+4)$

$$
\begin{gathered}
12 x+8=12 x+8 \\
-12 x-12 x \\
\hline 8=8
\end{gathered}
$$

All real numbers

3.5-3.6: Set up and solve proportions

- Be able to solve proportions using cross - products

Ex: $\frac{36}{54}=\frac{2 x}{6}$

$$
\begin{gathered}
\frac{216}{108}=\frac{108 x}{108} \\
2=x
\end{gathered}
$$

$$
\text { Ex: } \begin{aligned}
\frac{m+3}{8} & =\frac{40}{64} \\
64(m+3) & =320 \\
64 m+192 & =320 \\
\frac{-192}{\frac{64 m}{64}} & =\frac{-192}{64} \\
m & =2
\end{aligned}
$$

- Be able to set up a proportion from a word - problem and solve.

Ex: A map has a scale of 1 cm to 15 km . What is the actual distance if two cities are 6 cm apart on a map?

$$
\begin{aligned}
& \frac{1}{15}=\frac{6}{x} \\
& x=90 \mathrm{~km}
\end{aligned}
$$

Ex: A recipe yields that 12 buttermilk biscuits calls for 2 cups of flour. How much flour is needed to make 30 biscuits?

$$
\begin{aligned}
& \frac{12}{2}=\frac{30}{x} \\
& x=5 \mathrm{cups}
\end{aligned}
$$

