Study Guide

3.1-3.4 Quiz

3.1: Solve One-Step Equations

- Be able to use inverse operations to isolate the variable and solve one-step equations

Ex: $\frac{7}{2} \cdot \frac{2}{7} n=-5 \cdot \frac{7}{2}$

$$
\begin{aligned}
& \text { Ex: }-5+x=-4 \\
& \begin{array}{r}
+5 \quad+5 \\
x=1
\end{array}
\end{aligned}
$$

Ex: $1-x=-2$

$$
\begin{gathered}
-1 \quad-1 \\
\hline-x=-3 \\
x=3
\end{gathered}
$$

Ex: $\frac{-4 x}{-4}=\frac{-16}{-4}$
Ex: $\quad 2 \cdot \frac{x}{2}=-4 \cdot 2$
Ex: $x-10=-3$

$+10 \quad+10$

$x=4$
$x=-8$
$x=7$

Ex: $\frac{9 x}{9}=\underline{3}$
Ex: $\frac{4 x}{4}=\frac{7}{4}$
Ex: $\frac{-2 x}{-2}=\underline{5}$
$x=\frac{1}{3}$
$x=\frac{7}{4}$
$x=-\frac{5}{2}$
**These answers should be left as reduced improper fractions.

- Be able to use inverse operations and reverse PEMDAS to solve multi-step equations
Ex: $4 w+2 w=24$
Ex: $\frac{x}{2}+5=11$

$$
\begin{array}{rr}
\frac{6 w}{6}=\frac{24}{6} & \frac{-5}{}-5 \\
\frac{x}{2}=6 \\
w=4 & \cdot 2 \quad .2 \\
& x=12
\end{array}
$$

Ex: $5 x-4(x-3)=17$

$$
\begin{aligned}
& 5 x+-4(x+-3)=17 \\
& 5 x+-4 x+12=17 \\
& 1 x+12=17 \\
& \frac{-12}{}-12 \\
& x=5
\end{aligned}
$$

$$
\begin{aligned}
\text { Ex: } \frac{4}{3} \cdot \frac{3}{4}(z-6)=12 \cdot \frac{4}{3} & \text { Ex: }-4 & =2(x-2)-3(1-x) \\
z-6=16 & -4 & =2(x+-2)+-3(1+-x) \\
\frac{+6+6}{z=22} & -4 & =2 x+-4+-3+3 x \\
& -4 & =5 x+-7 \\
& \underline{3} & =\underline{5 x} \\
& x & =\frac{3}{5}
\end{aligned}
$$

*Don't forget to rewrite subtraction as adding a negative BEFORE distributing!!

- Be able to write and solve an equation to model real-world situations.

Ex: To join a local gym you must pay a one-time membership fee of $\$ 50$. Each month you go you must also pay a monthly fee of $\$ 15$. One gym member paid a total of $\$ 125$. Write and solve an equation to determine the number of months this member attended the gym. Be sure to identify a variable and what it represents.
$x=\#$ months

$$
\begin{aligned}
& 125=15 x+50 \\
& \frac{-50 \quad-50}{\frac{75}{15}=\frac{15 x}{15}} \\
& 5=x
\end{aligned}
$$

