Study Guide 2.5 Quiz Distributive Property and Combining Like Terms

Be able to identify terms, like terms, coefficients, and constants.

Problem	Number of Terms	Give One Set of Like Terms	List the Constants	List the Coefficients
Ex. $-2x + 3y - 4 + 7x$				
Ex. $5x - 3 - 6x + 1$				

Be able to simplify using the distributive property.

EX. $4(3x + 7)$ EX. $2x(4x - 3)$ EX. $2(x - 0)$	Ex. $4(3x+7)$	Ex. $2x(4x-5)$	Ex. $-2(x-6)$
--	----------------------	-----------------------	----------------------

Be able to combine like terms.

Ex. $2y + 6y$	Ex. $6x + 5 - 3x - 8$	Ex. $-2y + 3x - 12y - 10x$
----------------------	------------------------------	-----------------------------------

Be able to simplify expressions by distributing and combining like terms.

Ex. $2x + 3(x + 5)$	Ex. $5(x-7) + 2x$	Ex. $3x - 2(x - 4)$
$\mathbf{L}_{\mathbf{X}} = \mathbf{L}_{\mathbf{X}} + \mathbf{S}(\mathbf{X} + \mathbf{S})$	$\mathbf{L}_{\mathbf{X}} = \mathbf{S}(\mathbf{X} + \mathbf{r}) + \mathbf{L}_{\mathbf{X}}$	