10.2: Graph $y=a x^{2}+b x+c$

Goals: *Find axis of symmetry
*Find the vertex
*Graph a quadratic function by finding the axis of symmetry and vertex

Properties of Graphs of Quadratic Functions:

. If $a>0$ then

$$
a<0 \text { then }
$$

- If $\quad|a|>1$ then
$|a|<1$ then
- To find the axis of symmetry use:
- The vertex always occurs: - so to find the vertex:
- y-intercept:

For each quadratic function, find the axis of symmetry and the vertex. State whether the vertex is a minimum or maximum point.

Ex: $y=x^{2}-2 x-3$
Ex: $y=3 x^{2}+12 x-1$

For each quadratic function find the maximum or minimum value. State which it is.
Ex: $y=-3 x^{2}-12 x+10$
Ex: $f(x)=2 x^{2}-16 x+4$

Graph. First find the vertex then choose $2-3$ point around the vertex to complete the graph. Use your knowledge of characteristics of parabolas to ensure your final graph makes sense.

Ex: $y=-2 x^{2}+12 x-7$

Ex: $y=3 x^{2}-6 x+2$

Ex: $y=3 x^{2}+12 x-8$

Ex: $y=2 x^{2}-8 x+7$

Ex: The suspension cables between two towers of the Mackinac Bridge in Michigan form a parabola that can be modeled by the graph of $y=0.000097 x^{2}-0.37 x+549$ where x and y are measured in feet. What is the height of the cable at the lowest point?

Ex: The cables between two telephone poles can be modeled by the equation $y=0.0024 x^{2}-0.1 x+24$, where x and y are measured in feet. To the nearest foot, what is the height of the cable above the ground at its lowest point?

Ex: The cables between the two towers of the Tacoma Narrows bridge form a parabola that can be modeled by the equation $y=0.00014 x^{2}-0.4 x+507$ where x and y are measured in feet. What is the height of the cable above the water at its lowest point? Round your answer to the nearest foot.

