10.1: Graph $y=a x^{2}+c$

Goals: *Graph quadratic functions by making a table
*Identify the vertex of a parabola
*Identify whether a quadratic function will have minimum or maximum point without graphing
*Identify characteristics of a parabola based on a quadratic equation
RECALL (from Ch. 9) quadratic function:

parabola:

Ex: Graph $y=x^{2}$ by making a table:

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}							

$y=x^{2}$ is called the "Parent quadratic function" you compare all other quadratic functions to it.

vertex:
axis of symmetry:

OBSERVATIONS

a) Graph the following quadratic functions. Graph the odds by making a table and graph the evens by using a graphing calculator and copying it onto the graph provided.
b) For each parabola identify the vertex and axis of symmetry.
c) Compare each parabola to $y=x^{2}$ and begin to come up with some observations about characteristics of parabolas as they compare to their quadratic equations. (Ex: Direction it is facing/opening, narrowness/wideness, vertex)

1. $y=2 x^{2}$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}							

Vertex:
Axis of Symmetry:

3. $y=-2 x^{2}$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}							

Vertex:
Axis of Symmetry:

2. $y=3 x^{2}$

Vertex: \qquad
Axis of Symmetry: \qquad

4. $y=-3 x^{2}$

Vertex: \qquad
Axis of Symmetry: \qquad

5. $y=\frac{1}{2} x^{2}$
6. $y=\frac{1}{4} x^{2}$

\boldsymbol{x}	-6	-4	-2	0	2	4	6
\boldsymbol{y}							

Vertex:
Axis of Symmetry: \qquad

7. $y=5 x^{2}$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}							

Vertex:
Axis of Symmetry:

Vertex: \qquad
Axis of Symmetry: \qquad

8. $y=-4 x^{2}$

Vertex: \qquad
Axis of Symmetry:

9. $y=x^{2}+5$
10. $y=x^{2}-1$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}							

Vertex: \qquad
Axis of Symmetry:

11. $y=x^{2}+4$

\boldsymbol{x}	-3	-2	-1	0	1	2	3
\boldsymbol{y}							

Vertex:
Axis of Symmetry: \qquad

Vertex: \qquad
Axis of Symmetry: \qquad

12. $y=x^{2}-2$

Vertex: \qquad
Axis of Symmetry: \qquad

Now use your observations to sketch the graphs of the following quadratic functions:

1. $y=\frac{1}{2} x^{2}-4$
2. $y=-\frac{3}{2} x^{2}-2$

3. $y=3 x^{2}-6$

4. $y=-5 x^{2}+1$

THOUGHTS TO CONSIDER

- What makes a parabola narrower?
- What makes a parabola wider?
- What makes a parabola open facing upward (U- shaped)?
- What makes a parabola open facing downward (\cap-shaped)?
- What shifts a parabola up on the \boldsymbol{y}-axis?
- What shifts a parabola down on the \boldsymbol{y}-axis?

